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Question: what spatial Besov regularity does the solution to the
stochastic heat equation posess?

I.e., let

I (Ω,F ,P,F) a filtered probability space,

I d ∈ N, p, q ∈ (0,∞), τ ∈ R,

I Wn : [0,∞)× Ω→ R, n ∈ N, independent standard
F-Brownian motions,

I gn : [0,∞)× Ω→ Bτp,q(Rd), n ∈ N, F-progressively
measurable, and

I u0 ∈ B
τ+ 1

2
p,q (Rd).

Consider 
du = ∆u dt +

∑
n≥1

gn dWn(t), t ∈ [0,∞),

u(0) = u0.

Question: for what σ ∈ R and in what sense does a solution
u : [0,T ]× R→ Bσp,q(Rd) to this equation exist?
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Why care about Besov regularity?

The ‘σ’ in Bσp,q(Rd) indicates the smoothness of elements of this
space.

More specifically, it determines the efficiency of adaptive
discretization algorithms1 for a different range of parameters as the
efficiency of non-adaptive discretization algorithms.

1See DeVore (1998), Binev et al. (2002), Gaspoz and Morin (2014)
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Optimal convergence rate in ‖·‖Lq(Rd ) for an adaptive
wavelet/finite element approximation is determined by greatest α
s.t. the target function lies in Bαp,p(Rd) (= W α,p(Rd))2, where
1
p = α

d + 1
q .

Optimal convergence rate in ‖·‖Lq(Rd ) for non-adaptive
wavelet/finite element approximation is determined by greatest α
s.t. the target function lies in W α,q(Rd).

Conclusion: adaptive methods may outperform non-adaptive
methods.

Difficulty: if α > d(q−1)
q then Bσp,p, p ∈ (0, 1), is a quasi-Banach

space, not a Banach space.
More precisely, for p ∈ (0, 1), σ ∈ R, x , y ∈ Bσp,p one has

‖x + y‖pBσp,p ≤ ‖x‖
p
Bσp,p

+ ‖y‖pBσp,p ,

i.e., ‖·‖Bσp,p is an p-norm.

2if α /∈ N
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Challenge: develop stochastic calculus in quasi-Banach space
setting. More about this later. First we answer the well-posedness
question that was solved using this stochastic calculus.

Theorem (Cioica, C., Veraar (2018))

Let

I α ∈ R, p, q, r ,T ∈ (0,∞),

I (Kt)t∈[0,∞) the heat kernel,

I (Ω,F ,P,F) a filtered probability space,

I Wn : [0,∞)× Ω→ R, n ∈ N, independent standard
F-Brownian motions, and

I gn : [0,T ]×Rd ×Ω→ R F-progressively measurable and such
that supt∈[0,T ] ‖(gn)n∈N‖Lr (Ω;Bαp,q(Rd ;L2

1/2−
(0,t;`2))) <∞.
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Theorem (cont’d from previous slide)

For all ϕ ∈ S (Rd), t ∈ [0,∞) define

U(t)(ϕ) = (Kt ∗ u0) (ϕ) +
∞∑
n=1

∫ t

0
(Kt−s ∗ gn(s))(ϕ)dWn(s) P-a.s.

Then for all σ ∈ [α, α + 1), u0 ∈ Lr (F0;Bσp,q(Rd)) the stochastic

process U is well-defined as an F-adapted, Bσp,q(Rd)-valued
process.

Moreover, for all σ ∈ [α, α + 1), all λ ∈ (0, 1
2 (α + 1− σ)] ∩ (0, 1

2 ),
and all u0 ∈ Lr (F0;Bσ+2λ

p,q (Rd)) it holds that

‖U‖Cλ([0,T ];Lr (Ω;Bσp,q(Rd ))) <∞. (1)



Ingredients of proof

I Develop a stochastic calculus in a quasi-Banach space E :
I introduce γ-radonifying operators γ(H,E ) (H is a Hilbert

space);
I introduce abstract stochastic integral for R ∈ γ(H,E ) with

respect to an H-isonormal process WH ;
I use decoupling techniques to identify spaces E for which

R ∈ LrF(Ω; γ(L2(0,T ;H);E )) guarantees existence of an
integral of R with respect to WL2(0,T ;H) (in this case E is said
to satisfy the decoupling property.)

I use ‘standard’ Fubini and Kahane-Khintchine arguments to
show that Bσp,q satisfies the decoupling property and to show

that γ(H,Bσp,q(Rd)) ∼ Bσp,q(Rd ,H).

I verify that the heat kernel (Kt)t∈[0,∞) has appropriate
smoothing properties (using Fourier-multiplier techniques,
here it is useful to work in the Besov space setting).
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Differences between quasi-Banach and Banach space
setting

Let E be an r -Banach space, r ∈ (0, 1), and let H be a Hilbert
space.

1) For all p ∈ [1,∞), x1, . . . , xn ∈ E , (hk)nk=1 an ONS in H,
(γk)nk=1 i.i.d. standard Gaussians it holds that∥∥∥∥∥

n∑
k=1

γkxk

∥∥∥∥∥
Lp(Ω;E)

≤

∥∥∥∥∥
n∑

k=1

hk ⊗ xk

∥∥∥∥∥
γ(H,E)

≤ 2
1−r
r

∥∥∥∥∥
n∑

k=1

γkxk

∥∥∥∥∥
Lp(Ω;E)

.



Differences between quasi-Banach and Banach space
setting (cont’d)

Let E be an r -Banach space, r ∈ (0, 1), and let H be a Hilbert
space.

2) The dual of E may be trivial (e.g. the dual of Lp(0, 1) is trivial
for p ∈ (0, 1)). Consequently, the stochastic integral cannot in
general be identified by testing against the dual. Moreover, in
general it is not clear whether the Karhunen-Loeve expansion
exists.

3) E does not satisfy the UMD property. Instead, we consider
one-sided decoupling as in C. & Veraar (2010), G. & Geiss (2018)
(this goes back to ideas of Kwapień and Woyczynski, and Garling,
respectively).
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