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Numerical integration

Problem

Compute

I (f ) :=

∫
[0,1]s

f (x) dx,

where s ∈ N and f : [0, 1]s → R is integrable.

Linear algorithm denotes an approximation of I (f ) by the form

QP,W (f ) :=
N−1∑
n=0

wnf (xn).

where P = {x0, . . . , xN−1} ⊂ [0, 1]s ,W = {w0, . . . ,wN−1} ⊂ R.
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Quasi-Monte Carlo (QMC)

QMC integration denotes a special case of linear algorithm with

w0 = · · · = wN−1 =
1

N
,

i.e., an approximation of I (f ) by the form

QP(f ) :=
1

N

N−1∑
n=0

f (xn).

Josef Dick (UNSW) Extrapolated polynomial lattice rules MCQMC 2018 3 / 29



Richardson extrapolation
Classical technique invented by Lewis Fry Richardson (1881–1953; English
mathematician, physicist, meteorologist, psychologist and pacifist).

Consider sequence of real numbers e1 > e2 > e3 > · · · such that
limn→∞ en = 0. Assume e1, e2, . . . ’behave nicely’ – for instance, assume
that the points

(log N1, log eN1), (log N2, log eN2), (log N3, log eN3), . . .

lie on a line.
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More generally, assume that the points

(log N1, log eN1), (log N2, log eN2), (log N3, log eN3), . . .

lie on some curve.
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Richardson’s idea: If we can find the curve, we can guess eN for large
values of N and use this information to eliminate/reduce the error.
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Richardson extrapolation
Assume that the points (log Ni , log eNi

), i = 1, 2, . . . lie on a straight line

log eN = log c − α log N ⇔ eN =
c

Nα
.

The errors eN are given by

eN = I − QN .

Then we have

0 =(2N)αe2N − NαeN = (2N)αI − NαI − ((2N)αQ2N − NαQN),

which implies

I =
(2N)αQ2N − NαQN

(2N)α − Nα
=

2α

2α − 1
Q2N −

1

2α − 1
QN .

Note: Sum of the weights is 1 and independent of N.
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Assume that
eN =

c1
N

+
c2
N2

.

Then

e
(1)
N = eN − 2e2N =

c1
N

+
c2

4N2
− 2

c1
2N
− 2

c2
4N2

=
c2

2N2
.

Now repeat the procedure using e
(1)
N to eliminate c2...
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If the points are not on a line (curve) this could go horribly wrong...
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Could Richardson extrapolation work for higher order QMC?
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Some HOQMC numerical examples: f (x) = x

We use higher order Sobol points of order 1, 2, 3, 4.
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Some HOQMC numerical examples: f (x) = sin(2πx)

We use higher order Sobol points of order 2.
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Some HOQMC numerical examples: f (x) = 5/2x3/2

We use higher order Sobol points of order 1, 2, 3.

Look at theory...
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Motivation: Fast QMC matrix vector multiplication

In some applications integrals are of the form∫
[0,1]s

f (yA)dy ≈ 1

N

N−1∑
n=0

f (xnA).

This appears in particular in PDEs with random coefficients, where the
main computational cost is the computation of xnA for n = 1, 2, . . . ,N− 1.

(D., Kuo, Le Gia, Schwab, 2015)
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For lattice rules and polynomial lattice rules, we define

X =


x1
x2
...

xN−1

 .

Then
X = CP,

where C is a circulant matrix and P is a matrix which has one value of 1
in each column and the remaining values are 0’s.

Using the fast Fourier transform we can compute CPA in O(sN log N)
operations assuming that N � sz .

This does not work for interlaced polynomial lattice rules. But it works
with extrapolated polynomial lattice rules.
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Fast QMC matrix vector product numerical result for PDE with random
coefficients with N QMC points, truncation dimension s and dimension of
finite element space M.

N 509 1021 2053 4001 8009 16001

std. 190 1346 10610 74550 ≈ 144 hrs ≈ 1000 hrs
fast 0.462 1.562 5.591 19.678 87.246 342.615

Table: Times (in seconds) where M = s = 2N

.N 509 1021 2053 4001 8009 16001

std. 1.272 3.570 10.813 30.127 89.42 273.873
fast 0.059 0.126 0.265 0.516 1.113 2.443

Table: Times (in seconds) where M = s = d
√

Ne

.N 67 127 257 509

std. 6 82 1699 27935
fast 0.243 1.385 11.268 107.042

Table: Times (in seconds) where s = N and M = N2
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Integration error

For a digital net P with C1, . . . ,Cs ∈ Fn×m
b , we have

QP(f )− I (f ) =
1

bm

bm−1∑
h=0

f (xh)− I (f )

=
∑

k∈P⊥\{0}
bn-k

f̂ (k) +
c1(f )

bn
+ · · ·+ cα−1(f )

b(α−1)n + O(b−αn).

In case of square generating matrices, i.e., the case n = m, a digital net
cannot achieve a convergence rate better than O(N−1) no matter how
small the first term is.
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Possible remedy 1

Consider non-square matrices, say, C1, . . . ,Cs ∈ Fαm×mb . Then

QP(f )− I (f ) =
∑

k∈P⊥\{0}
bαm-k

f̂ (k) +
c1(f )

bαm
+ · · ·+ cα−1(f )

b(α−1)αm + O(b−α
2m).

The remaining task is to find P such that the first term is small.

1 Digit interlacing algorithm (D., 2007, 2008)
⇒ Interlaced polynomial lattice rule (Goda & D., 2015; Goda, 2015;
...)

2 Higher order polynomial lattice rule (D. & Pillichshammer, 2007;
Baldeaux, D., Leobacher, Nuyens & Pillichshammer, 2012;...)

Both approaches achieve O(b−(α−ε)m) error convergence.
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Possible remedy 2 (new, this study)

Consider a set P1, . . . ,Pα with square matrices and |Pi | = bm−α+i .

QP1(f )− I (f ) =
∑

k∈P⊥1 \{0}
bm−α+1-k

f̂ (k) +
c1(f )

bm−α+1
+ · · ·+ cα−1(f )

b(α−1)(m−α+1)
+ O(b−α(m−α+1))

...

QPα
(f )− I (f ) =

∑
k∈P⊥α \{0}

bm-k

f̂ (k) +
c1(f )

bm
+ · · ·+ cα−1(f )

b(α−1)m + O(b−αm)

Then take a weighted sum of QPi
(f ) s.t. the middle terms vanish.
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Possible remedy 2 (cont’d)

This can be done by applying Richardson extrapolation recursively,
i.e., we can explicitly compute the coefficients ri ’s which satisfy∑α

i=1 ri = 1 and

α∑
i=1

ri
bm−α+i

bm−α+i−1∑
n=0

f (x
(i)
n )− I (f ) =

α∑
i=1

ri
∑

k∈P⊥i \{0}
bm−α+i -k

f̂ (k) + O(b−αm).

The remaining task is to find Pi ’s such that the first term is small.
This strategy leads to
Extrapolated polynomial lattice rule (D., Goda, Yoshiki, 2018+)

The ri are independent of the number of points
N = bm−α+1 + · · ·+ bm and

α∑
i=1

|ri | ≤
α−1∏
i=1

bi + 1

bi − 1
.
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Polynomial lattice point set

Definition (Niederreiter, 1992)

For m, s ∈ N, let p ∈ Fb[x ] with deg(p) = m and let q ∈ (Fb[x ])s .

P(p,q) is a digital net with square generating matrices

Cj =


a
(j)
1 a

(j)
2 · · · a

(j)
m

a
(j)
2 a

(j)
3 · · · a

(j)
m+1

...
...

. . .
...

a
(j)
m a

(j)
m+1

. . . a
(j)
2m−1

 ∈ Fm×m
b ,

where
qj(x)

p(x)
=
∞∑
i=1

a
(j)
i x−i .
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Sobolev spaces Ws,α,q,γ

The function space Ws,α,q,γ consists of functions f having partial
mixed derivatives f (τ1,...,τs) for 0 ≤ τ1, . . . τs ≤ α with the finite norm

‖f ‖s,α,q,γ := sup
u⊆{1,...,s}

γ−1u

×

(∑
v⊆u

∑
τ∈{1,...,α}|u\v|

∫
[0,1)|v|

∣∣∣∣∣
∫
[0,1)s−|v|

f (τ u\v ,αv ,0)(x) dx−v

∣∣∣∣∣
q

dxv

)1/q

.

This function space has been introduced in the context of PDEs with
random coefficients (D., Kuo, Le Gia, Nuyens & Schwab, 2014).
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Worst-case error bound

Theorem (D., Goda, Yoshiki, 2018+)

For m, s ∈ N, m ≥ α, let P(pi ,qi ) be a polynomial lattice point set
with deg(pi ) = m − α + i for i = 1, . . . , α.

The worst-case error of an extrapolated polynomial lattice rule is
bounded by

sup
‖f ‖≤1

∣∣∣∣∣
α∑

i=1

riQP(pi ,qi )
(f )− I (f )

∣∣∣∣∣ ≤
α∑

i=1

|ri |Bs,γ(P(pi ,qi )) + O(N−α)

where N = bm−α+1 + · · ·+ bm, and Bs,γ is a computable quality
criterion and independent of q.
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CBC construction

Algorithm (Component-by-component)

1 For i = 1, . . . , α, do the following:

2 Let pi be irreducible with deg(pi ) = m − α + i and q∗i ,1 = 1 ∈ Fb[x ].

3 For j = 2, . . . , s, find q∗i ,j ∈ Fb[x ] which minimizes

Bj ,γ(P(pi , (q∗i ,1, . . . , q
∗
i ,j−1, qi ,j)))

as a function of qi ,j where deg(qi ,j) < m − α + i .

In case of product weights γu =
∏

j∈u γj , the CBC algorithm can find

qi such that Bs,γ(P(pi ,qi )) = O(N−α+ε) for i = 1, . . . , α.
Therefore, an extrapolated polynomial lattice rule can achieve the
almost optimal rate of convergence.

Many other methods also achieve this convergence rate: Frolov
(-Ullrich) rules, sparse grids, higher order nets, interlaced polynomial
lattice rules, ... But is there a fast matrix vector product for such
rules?
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Construction cost

Possible to use fast CBC algorithm due to Nuyens & Cools (2006).

Each qi can be found by the cost O((s + α) deg(pi )bdeg(pi )) with
O(bdeg(pi )) memory. In total, we need the cost of order

α∑
i=1

(s + α) deg(pi )bdeg(pi ) ≤ (s + α) deg(p1)
α∑

i=1

bdeg(pi )

= (s + α) deg(p1)N ≤ (s + α)N logb N

This compares favorably with ...

Interlaced polynomial lattice rule: O(sαN log N)
I We need to search for αs components.

Higher order polynomial lattice rule: O(sαNα log N)
I The search space of generating vectors is exponentially larger in α.
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Numerical experiment (α = 2)
Consider the test function:

f (x) =
s∏

j=1

[
1 +

γj
1 + γjxj

]
.

for s = 100 and γj = j−2.
Extrapolated rule with α = 2 (green), interlaced rule with α = 2 (red)
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Numerical experiment (α = 3)
Consider the test function:

f (x) =
s∏

j=1

[
1 +

γj
1 + γjxj

]
.

for s = 100 and γj = j−2.
Extrapolated rule with α = 3 (green) is slightly worse than interlaced
rule with α = 3 (red)
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IPL is slightly better.
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Thank you for your attention!
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Digital net

Definition

For prime b, Fb denotes the b-element field.

For s,m, n ∈ N, let C1, . . . ,Cs ∈ Fn×m
b .

Denote the b-adic expansion of 0 ≤ h < bm by h = (ηm−1 . . . η0)b.

Set xh = (xh,1, . . . , xh,s) ∈ [0, 1]s , where

xh,j = (0.ξ1,h,j . . . ξn,h,j)b ∈ [0, 1]

with
(ξ1,h,j , . . . , ξn,h,j)

> = Cj · (η0, . . . , ηm−1)>.

Then we call P = {xh : 0 ≤ h < bm} a digital net over Fb.

The parameter m determines the size of point set, and n the precision.
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Dual net

Definition

For a digital net P, the dual net is defined by

P⊥ :=
{
k = (k1, . . . , ks) ∈ Ns

0 : C>1
~k1 ⊕ · · · ⊕ C>s

~ks = 0 ∈ Fm
b

}
⊂ Ns

0,

where ~k = (κ0, . . . , κn−1)> for k = (. . . κ1κ0)b.

P⊥ includes every k = (k1, . . . , ks) such that bn | k, i.e., bn | kj holds
for all j . This means

P⊥ ⊃ {k ∈ Ns
0 : bn | k} = P⊥grid,n

where

Pgrid,n =
{( a1

bn
, . . . ,

as
bn

)
: 0 ≤ a1, . . . , as < bn

}
.
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Integration error
For a digital net P with C1, . . . ,Cs ∈ Fn×m

b , we have

QP(f )− I (f ) =
1

bm

bm−1∑
h=0

f (xh)− I (f )

=
∑

k∈P⊥\{0}

f̂ (k)

=
∑

k∈P⊥\{0}
bn-k

f̂ (k) +
∑

k∈P⊥\{0}
bn|k

f̂ (k)

=
∑

k∈P⊥\{0}
bn-k

f̂ (k) +
∑

k∈P⊥grid,n\{0}

f̂ (k)

=
∑

k∈P⊥\{0}
bn-k

f̂ (k) +
(
QPgrid,n

(f )− I (f )
)

where f̂ (k) denotes the k-th Walsh coefficient of f .
Josef Dick (UNSW) Extrapolated polynomial lattice rules MCQMC 2018 29 / 29



Euler-Maclaurin formula for QPgrid,n
(f )

Lemma

If f has partial mixed derivatives up to order α ≥ 2 in each variable,

QPgrid,n
(f ) = I (f ) +

c1(f )

bn
+ · · ·+ cα−1(f )

b(α−1)n + O(b−αn).

Here

cτ (f ) =
∑

(τ1,...,τs)∈Ns
0

τ1+···+τs=τ

s∏
j=1

Bτj
τj !
· I (f (τ1,...,τs))

where Bτ denotes the τ -th Bernoulli number.
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