Para-Real Monte Carlo for American/Bermudan options

Sorbonne Université, LPSM

Gilles Pagès ², Olivier Pironneau¹, Guillaume Sall¹, ²

LJLL1-LPSM2 Sorbonne University (UPMC)

July 4, 2018

The Parareal Method for an ODE

[J.-L. Lions-Maday-Turinici, 2001]. Parareal = Para-Real = Parallel + Real Time.

Consider an ODE on [0, T],

$$\dot{x}=b(t,x),\quad x(0)=x_0.$$

• To solve numerically this ODE, one introduces the Euler scheme with step $\Delta = \frac{T}{K}$, $K \in \mathbb{N}^*$, starting at x_0 : let

$$[0,T] = \bigcup_{0}^{K-1} [t_k, t_{k+1}], \quad t_k = \frac{kT}{K}.$$

and the standard Euler operator

$$x_{t_{k+1}} = \mathcal{E}_{\Delta}(x_{t_k}, t_k) := x_{t_k} + \Delta b(t_k, x_{t_k}), \quad k = 0 : K - 1.$$

The Parareal Method for an ODE

• We divide each interval $[t_k, t_{k+1}]$ into smaller subintervals

$$[t_k, t_{k+1}] = \bigcup_{0}^{J-1} [t_{k,j}, t_{k,j+1}]$$

where we set
$$\delta = \frac{\Delta}{J} = \frac{T}{JK}$$
.

$$t_{k,j}=t_k+j\delta,\ j=0:J.$$

- Let \mathcal{E}_{δ} and \mathcal{E}_{Δ} be the Euler operators with time steps $\delta < \Delta$. Then, starting from $x_k \in \mathbb{R}^d$:
 - $\mathcal{E}^{J}_{\delta}(x_k, t_k) = \mathcal{E}_{\delta}(t_{k,J-1}, \cdot) \circ \cdots \circ \mathcal{E}(x_k, t_k)$ is the high precision solution at t_{k+1} starting from x_k at time t_k .
 - $\mathcal{E}_{\triangle}(x_k, t_k)$ is the low precision solution at t_{k+1} starting from x_k at t_k .

The Parareal Method for an ODE

The Parareal scheme is an iteration loop over the forward loop in time:

```
• Initialize: x_{k+1}^0 = x_k^0 + \mathcal{E}_\Delta(x_k^0, t_k), \quad k = 0, \dots, K-1, \quad x_0^0 = x(0).
• for n = 0, \dots, N-1
x_0^{n+1} = x(0).
for k = 0, \dots, K-1
x_{k+1}^{n+1} = \underbrace{\mathcal{E}_\Delta(x_k^{n+1}, t_k)}_{low\ precision} + \underbrace{\mathcal{E}_\delta^J(x_k^n, t_k) - \mathcal{E}_\Delta(x_k^n, t_k)}_{high\ precision\ at\ n}.
end (k)
end (n).
```

- The coarse grid scheme is corrected by the error between the fine grid prediction and the the old coarse grid scheme computed at the former "old" value.
- For more see e.g. Martin Gander (SINUM, 2007).
- Remark. Note that x_k^n is the solution of the Euler scheme with fine step δ when as long as $k \le n$.

The Parareal Method for an ODE (parallel implementation)

- When the computation of the $(x_k^n)_{k=0:K}$ is completed (which is "fast" since Δ is "large").
- The K "refiners" $(\mathcal{E}_{\delta}^{J}(x_{k}^{n},t_{k})-\mathcal{E}_{\Delta}(x_{k}^{n},t_{k}))$, k=0:K-1 can be computed in parallel.
- For a fixed *n*, the global complexity is higher than a single fine Euler scheme (due to two coarse Euler schemes computations).
- but parallelization dramatically speeds up the execution (by almost a K factor).
- The parareal algorithm was devised for parallel architectures.
- A multilevel version can be derived by considering in cascade each fine level as a coarse level on which is defined a finer parareal scheme.

The Parareal Method for an SDE (I)

Consider a d-dim Brownian diffusion process

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t$$
, $X_0 \perp \!\!\! \perp W q$ -S.B.M.

with standard Lipschitz assumptions on $b:[0,T]\times\mathbb{R}^d\to\mathbb{R}$ and $\sigma[0,T]\times\mathbb{R}^d\to \mathcal{M}(d,q,\mathbb{R})$;

 Replace mutatis mutandis the ODE Euler operator by the SDE Euler operator:

$$\mathcal{E}_{\Delta}(x,t,Z) = x + \Delta b(t,x) + \sqrt{\Delta} \, \sigma(t,x) Z, \quad Z \sim \mathcal{N}(0,I_q).$$

• As before, let $\delta = \frac{\Delta}{J}$, so that

$$[t_k, t_{k+1}] = \bigcup_{j=0}^{J-1} [t_{k,j}, t_{k,j+1}]$$

with

$$t_{k,j+1} = t_{k,j} + \delta, \ j = 0: J-1 \ \ \text{and} \ \ t_k = t_{k,0} = t_{k-1,J}.$$

Generate one/M path(s) of the Parareal scheme for an SDE

Initialization

- Generate i.i.d. $\mathcal{N}(0, I_q)$ -distributed fine increments: $(Z_{k,j})_{k=1:K}$ i=1:I.
- Coarse increments: Set $Z_k = \frac{Z_{k,1} + \cdots + Z_{k,J}}{\sqrt{J}}$, k = 1 : K.
- Initialize of the parareal scheme: $\widehat{X}_{t_{t_{-}}}^{0} = \mathcal{E}_{\Delta}(\widehat{X}_{t_{t_{-}}}^{0}, t_{k}, Z_{k}), k = 0 : K 1.$

for
$$n = 0$$
: $N - 1$ (parareal iterations)

for k = 0: K - 1 (forward time loop):

• Fine grid solution $\{\widetilde{X}_{t_k,j}^{\delta,n}\}_{j=0}^J$ on $[t_k,t_{k+1}]$ with step δ , started at $t_{k,0}=t_k$ from $\widehat{X}_{t_k}^n$:

$$\widetilde{X}_{t_{k,0}}^{\delta,n} = \widehat{X}_{t_k}^n, \qquad \widetilde{X}_{t_{k,j+1}}^{\delta,n} = \mathcal{E}_{\delta}(\widetilde{X}_{t_{k,j}}^{\delta,n}, t_{k,j}, Z_{k,j+1}), \quad j = 0: J-1.$$

- **2** Coarse grid solution at t_{k+1} : $\bar{X}_{t_{k+1}}^{\Delta} = \mathcal{E}_{\Delta}(\hat{X}_{t_k}^{n+1}, t_k, Z_k)$.

end k-loop.

end n-loop. [[For M paths repeat M times inside each loop (or //!)]] 0.9

The Parareal Method for an SDE: convergence rate I

Theorem 1 [P., Pironneau, Sall, '17, SIFIN '18] Let $n \leq K \in \mathbb{N}$.

Assume $(b, \sigma) \in C^0([0, T] \times \mathbb{R}^{d+d\otimes q})$, C^2 in x with Lipschitz continuous spatial derivatives, uniformly in $t \in [0, T]$. Let $(\bar{X}_{t_{k,j}}^{\delta})_{j,k}$ be the fine Euler scheme with step δ starting from $X_0 \in L^2(\mathbb{P})$.

There exists a real constant C only depending on T and the Lipschitz constants and norms of $b, b', b'', \sigma, \sigma', \sigma''$, such that:

• for $k \in \{n, ..., K\}$,

$$\begin{split} \|\widehat{X}_{t_k}^n - \bar{X}_{t_k}^{\delta}\|_{L^2(\mathbb{P})} &\leq (C\Delta)^n \sqrt{\binom{k}{n}} \|\bar{X}_{t_k}^{\Delta} - \bar{X}_{t_k}^{\delta}\|_{L^2(\mathbb{P})} \\ &\leq (C\Delta)^{n+\frac{1}{2}} \sqrt{\binom{k}{n}}. \end{split}$$

- for all $0 \le k \le n$: $\widehat{X}_{t_k}^n = \bar{X}_{t_k}^\delta$ (coincide with the fine Euler scheme).
- Extends & improves [Bal-Maday, '04] (diffusion supposed to be simulable).
- \triangleright Contains *ODE* error bounds when $\sigma \equiv 0$.

The Parareal Method for an SDE: convergence rate II

Theorem 2 [P., Pironneau, Sall, '17]

For fixed Δ, δ and n parareal iterations, the final and uniform errors satisfy

$$\max_{k=0:K} \|\widehat{X}_{t_k}^n - \bar{X}_{t_k}^{\delta}\|_{L^2(\mathbb{P})} \le (C\Delta)^{\frac{n+1}{2}} \sqrt{\binom{K}{n}}$$
$$\le \frac{(C\Delta)^{\frac{n+1}{2}}}{\sqrt{n!}} e^{-\frac{n(n-1)}{2} \frac{\Delta}{T}}$$

and

$$\left\|\max_{k=0:K}|\widehat{X}^n_{t_k}-\bar{X}^\delta_{t_k}|\right\|_{L^2(\mathbb{P})}\leq \frac{(C'\Delta)^{\frac{n}{2}}}{\sqrt{(n+1)!}}\left(1+\frac{\Delta}{T}\right)^{\frac{1}{2}}\mathrm{e}^{-\frac{n(n-1)}{2}\frac{\Delta}{T}}.$$

- Interchanging max and L^2 -norm is costly: $(\widehat{X}^n_{t_k})_{k=0:K}$ is not a Markov chain.
- Unfortunately (?) for linear problems like computation of expectations, a naive parallelization ("path by path") is more efficient...
- Fortunately, not all problems in numerical probability are linear:

American/Bermudan Options & Tsitsiklis-Van Roy (& Longstaff-Schwartz)

- Dynamics: Brownian diffusion process or its Euler scheme.
- Bermudan/American payoff: $\varphi(x) = (K x)^+$ the Put payoff, fair price := Snell envelope:

$$\mathcal{V}_t = \mathbb{P} ext{-esssup}\left\{\mathbb{E}ig(arphi(m{\mathsf{X}}_ au)\,|\,\mathcal{F}^{m{W}}_tig),\, au:\Omega o[t,T] ext{ stopping time }ig)
ight\}$$

• Markov property: $V_t = \nu(t, X_t)$, with v solution to the parabolic Variational Inequality:

$$\max(\partial_t \nu + L\nu, \varphi - \nu) = 0, \ t \in [0, T), \quad v(T, .) = \varphi$$

but if d > 3 or 4...

Time discretization

- Switch from $(X_t)_{t \in [0,T]}$ to the Euler schemes like $(\bar{X}_{t_k})_{k=0:K}$.
- Discrete time Snell envelope:

$$\mathcal{V}_{t_k} = \mathbb{P}\text{-esssup}\left\{\mathbb{E}\big(\varphi(\bar{X}_\tau)\,|\,\mathcal{F}^{\mathcal{W}}_{t_k}\big),\,\tau:\Omega \to \llbracket t_k,\ldots,t_{\mathcal{K}} = T \rrbracket \text{ stopping time })\right\}$$

- Markov property: $V_{t_k} = v(t_k, \bar{X}_{t_k}), \quad k = 0 : K$.
- Backward Dynamic Programming Principle: The $(\mathcal{F}_{t_k})_k$ -Snell envelope satisfies

$$\begin{split} V_{t_n:=T} &= \varphi(\bar{X}_T), \quad V_{t_k} = \max\left(\varphi(\bar{X}_{t_k}), C_{t_k}\right), \quad k = 0: K-1, \\ &\text{with} \quad C_{t_k} = \mathbb{E}[V_{t_{k+1}} \mid \mathcal{F}_{t_k}] = \mathbb{E}[V_{t_{k+1}} \mid X_{t_k}] = c_{t_k}(\bar{X}_{t_k}) \end{split}$$

Regression à la Titsiklis-Van Roy

• Projection on $\mathrm{span}\{\psi_\ell(\bar{X}_{t_k}),\ \ell=1:L\}\simeq L^2(\sigma(\bar{X}_{t_k}))$ (T.& van R.)

$$\begin{split} C_{t_k} &\simeq \bar{c}(t_k, \bar{X}_{t_k}) := \sum_{j=1}^J \alpha_{k,j}^* \psi_j(\bar{X}_{t_k}) \\ \text{with} \quad \alpha_{k,\cdot}^* &= \mathrm{argmin}_{\alpha \in \mathbb{R}^L} \mathbb{E} \left[\left(\bar{v}(t_{k+1}, \bar{X}_{t_{k+1}}) - \sum_{\ell=1}^L \alpha_{k,j} \psi_\ell(X_{t_k}) \right)^2 \right]. \end{split}$$

$$\bar{v}(t_k, \bar{X}_{t_k}) = \max(\varphi(\bar{X}_{t_k}), \bar{c}(t_k, \bar{X}_{t_k})).$$

- Explicit solution involving a Gram matrix, etc.
- $\bar{v}(0, x0) \simeq V_0$.

- Monte Carlo version: with form $\mathbb{P}_{X_{t_k}}$ to $\frac{1}{M} \sum_{m=1}^{M} \delta_{X_{t_k}^{(m)}}$ (empirical measure of i.i.d. copies).
- Implementation by Monte-Carlo means that the *M* paths speak to each other to perform the regression: It is a non linear problem.
- Hence naive parallelization is a problem!

Parareal Decomposition for American Options

initialization : Simulate
$$\widehat{V}^0_{\it K}(\omega)=arphi(\widehat{X}^0_{\it T}(\omega))$$
, Compute

$$\widehat{V}_k^0 = \max\{\phi(\widehat{X}_{t_k}^0), \mathbb{E}[\widehat{V}_{k+1}^0|\widehat{X}_{t_k}^0]\}, \ k = K-1:0.$$

for
$$n=0$$
: $N-1$ (parareal iterations) Compute $\bar{V}_K^{n+1}=\hat{V}_K^{n+1}=\phi(\widehat{X}_T^{n+1})$ for $k=K-1,\ldots,0$:

 $\textbf{0} \ \, \text{On each} \,\, (t_k,t_{k+1}), \, \text{from} \,\, \widetilde{V}_{k,J}^{\delta,n} = \mathbb{E}(\widehat{V}_{k+1}^n \,|\, \widetilde{X}_{k,J}^{\delta,n}), \, \text{compute}$

$$\widetilde{V}_{k,j}^{\delta,n} = \max \big\{ \varphi(\widetilde{X}_{t_{k,j}}^{\delta,n}), \mathbb{E} \big[\widetilde{V}_{k,j+1}^{\delta,n} | \widetilde{X}_{t_{k,j}}^{\delta,n} \big] \big\}, j = J-1 \dots 0.$$

end (backward) k-loop

end n-loop

With projections (d = 1 for simplicity)

Denote by $\mathfrak{P}f$ the projection of f on the monomials $1, x, \ldots, x^P$.

initialization : From
$$\widehat{V}_{K}^{0}(\omega^{m}) = \varphi(\widehat{X}_{T}^{0}(\omega^{m})), m = 1 : M$$
 Compute

$$\widehat{V}_k^0 = \max\{\phi(\widehat{X}_{t_k}^0), \mathfrak{P}\,\mathbb{E}[\widehat{V}_{k+1}^0|\widehat{X}_{t_k}^0]\}, \ k = K-1:0.$$

for
$$n=0$$
: $N-1$ (parareal iterations) Compute $\bar{V}_K^{n+1}=\hat{V}_K^{n+1}=\phi(\widehat{X}_T^{n+1})$ for $k=K-1,\ldots,0$:

$$\widetilde{\boldsymbol{V}}_{k,j}^{\delta,n} = \max \big\{ \varphi(\widetilde{\boldsymbol{X}}_{t_{k,j}}^{\delta,n}), \mathfrak{P} \, \mathbb{E} \big[\widetilde{\boldsymbol{V}}_{k,j+1}^{\delta,n} | \widetilde{\boldsymbol{X}}_{t_{k,j}}^{\delta,n} \big] \big\}, \, j = J-1 \ldots 0.$$

- $\text{ Compute } \overline{V}_k^{n+1} = \max \big\{ \varphi(\widehat{X}_{t_k}^{n+1}), \mathfrak{P} \mathbb{E}[\overline{V}_{k+1}^{n+1} | \widehat{X}_{t_k}^{n+1}] \big\}.$

end (backward) k-loop

end n-loop

Pros and cons

- > Pros: All fine grid computations are local and can be assigned to separate processors: phase 1 in k-loop.
- \triangleright Cons: $(\hat{X}_{\iota}^{n})_{k=0:K}$ is not a Markov chain: it keeps memory of the former iterations (in n).
 - Hence

$$\begin{split} \bar{V}_{K}^{n+1} &= \hat{V}_{K}^{n+1} = \phi(\hat{X}_{T}^{n+1}), \ \bar{V}_{k}^{n+1} = \max \big\{ \varphi(\hat{X}_{t_{k}}^{n+1}), \mathfrak{P} \, \mathbb{E}[\bar{V}_{k+1}^{n+1} | \hat{X}_{t_{k}}^{n+1}] \big\} \\ k &= K-1 : 0 \end{split}$$

is not an $(\mathcal{F}_{t_k})_k$ Snell envelope... So we will be in theoretical trouble in the error analysis because of phase 2 in k-loop.

This led us to introduce a variant

$$\widehat{V}_k^{n+1} = \overline{V}_k^{n+1} + \widetilde{V}_{k,0}^{\delta,n} - \overline{V}_k^n$$

for which we could obtain theoretical results.

Parareal for American Option (II)

Proposition (True Snell envelopes) Let (for k = 0 : K)

$$\widehat{V}_{t_k}^{\Delta,n} = \mathbb{P} - \mathrm{esssup}_{\tau \in \mathcal{T}_{t_k}^{\mathcal{F}}} \mathbb{E}[\varphi(\widehat{X}_{\tau}^n) | \mathcal{F}_{t_k}], \ \bar{V}_{t_k}^{\Delta,\delta} = \mathbb{P} - \mathrm{esssup}_{\tau \in \mathcal{T}_{t_k}^{\mathcal{F}}} \mathbb{E}[\varphi(\widetilde{X}_{\tau}^{\delta}) | \mathcal{F}_{t_k}]$$

be the Snell envelopes of the parareal scheme $(\varphi(\widehat{X}^n_{t_k}))_{k=0:K}$ and of the fine Euler scheme $(\bar{X}^\delta_{t_k})_{k=0:K}$ observed at instants t_k .

$$\left\| \max_{k=0,\ldots,K} \left| \widehat{V}_{t_k}^{\Delta,n} - \bar{V}_{t_k}^{\Delta,\delta} \right| \right\|_{L^2(\mathbb{P})} \leq [\varphi]_{\operatorname{Lip}} \frac{(C\Delta)^{\frac{n}{2}}}{\sqrt{(n+1)!}} \left(1 + \frac{\Delta}{T} \right)^{\frac{1}{2}} e^{-\frac{n(n-1)}{2} \frac{\Delta}{T}}.$$

(Note that $(\bar{V}_{t_k}^{\Delta,\delta})_{k=0,...,K}$ is the coarse Snell envelope of the fine Euler scheme). At a fixed time t_k we have the better estimate

$$\left\|\widehat{V}_{t_k}^{\Delta,n} - \bar{V}_{t_k}^{\Delta,\delta}\right\|_2 \leq [\varphi]_{Lip} (C\Delta)^n \sqrt{\binom{K+1}{n+1} - \binom{k}{n+1}}.$$

◆ロト ◆団ト ◆星ト ◆星ト 星 めるの

Forcing Markov property: pseudo-Snell envelopes

Proposition (Pseudo-Snell envelopes) Let (for k = 0 : K)

$$\widehat{V}_{t_k}^{\Delta,n} = \mathbb{P} - \mathrm{esssup}_{\tau \in \mathcal{T}_{t_k}^{\mathcal{F}}} \mathbb{E}[\varphi(\widehat{X}_{\tau}^n) | \widehat{X}_{t_k}], \quad \bar{V}_{t_k}^{\Delta,\delta} = \mathbb{P} - \mathrm{esssup}_{\tau \in \mathcal{T}_{t_k}^{\mathcal{F}}} \mathbb{E}[\varphi(\widetilde{X}_{\tau}^{\delta}) | \widehat{X}_{t_k}]$$

be the Pseudo-Snell envelopes of the parareal scheme $(\varphi(\widehat{X}_{t_k}^n))_{k=0:K}$ and of the fine Euler scheme $(\bar{X}_{t_k}^\delta)_{k=0:K}$ observed at instants t_k .

$$\left\| \max_{k=0,\dots,K} \left| \widehat{V}_{t_k}^{\Delta,n} - \bar{V}_{t_k}^{\Delta,\delta} \right| \right\|_{L^2(\mathbb{P})} \leq [\varphi]_{\operatorname{Lip}} \frac{\left(C\Delta\right)^{\frac{n-1}{2}}}{\sqrt{(n+1)!}} \left(1 + \frac{\Delta}{T}\right)^{\frac{1}{2}} e^{-\frac{n(n-1)}{2}\frac{\Delta}{T}}.$$

Remark. The price to pay for non-Markovian feature of (\widehat{X}_k^n) is higher.

Final result for the modified algorithm

We consider the modified parallel algorithm

$$\hat{V}_{k}^{n+1} = \bar{V}_{t_{k}}^{n+1} + \widetilde{V}_{t_{k},0}^{\delta,n} - \bar{V}_{t_{k}}^{n}, \ k =: K - 1$$

where \hat{V}^0 is the Snell envelope of the Euler scheme with step Δ .

Theorem

There exists a real constant $C = C_{b,\sigma,T}$ such that, for every k = 0: K - 1,

$$\max_{k=0:K} \left\| \hat{V}_{t_k}^{n+1} - \bar{V}_{t_k}^{\delta} \right\|_2 \leq [\varphi]_{\mathrm{Lip}} C \sqrt{\Delta}$$

Proof. The triangle inequality implies

$$\begin{split} \left\| \hat{V}_{t_k}^{n+1} - \bar{V}_{t_k}^{\delta} \right\|_2 &\leq \left\| \bar{V}_{t_k}^{n+1} - \widetilde{V}_{t_k}^{\delta, \Delta} \right\|_2 + \left\| \bar{V}_{t_k, o}^{\delta, n} - \bar{V}_{t_k}^{\delta} \right\|_2 + \left\| \bar{V}_{t_k}^{n} - \widetilde{V}_{t_k}^{\delta, \Delta} \right\|_2 \\ &\leq \frac{\left(C'' \Delta \right)^{\frac{n}{2}}}{\sqrt{(n+2)!}} \left(1 + \frac{\Delta}{T} \right) e^{-\frac{n(n+1)}{4} \frac{\Delta}{T}} + [f]_{\mathrm{Lip}} C \sqrt{\Delta} \\ &+ \frac{\left(C'' \Delta \right)^{\frac{n-1}{2}}}{\sqrt{(n+1)!}} \left(1 + \frac{\Delta}{T} \right) e^{-\frac{n(n-1)}{4} \frac{\Delta}{T}} \leq C_{b,\sigma,T} [f]_{\mathrm{Lip}} \Delta \end{split}$$

Results (I): The Black-Scholes Case

▶ Underlying asset is given by the Black-Scholes SDE,

$$b(x, t) = rx$$
 $\sigma(x, t) = \sigma_0 x$ with $r = 0.05$, $\sigma_0 = 0.2$

and
$$\varphi(x) = (x_{\kappa})_+$$

$$x_0 = 36, \ \kappa = 40, \ T = 2.$$

- □ True price = 4.478 (by VI-PDE with finite difference).
- \triangleright Projection is performed on $\{1,x,x^2\}$ and the Monte Carlo froward simulation with $M=100\,000$ paths.
- ▶ We implemented the "natural" parareal algorithm with a Tsitsiklis-Van Roy algorithm (BDPP on the continuation function)

$$\hat{V}_{k}^{n+1} = \bar{V}_{t_{k}}^{n+1} + \tilde{V}_{t_{k,0}}^{\delta,n} - \hat{V}_{t_{k}}^{n}, \ k =: K - 1$$

 \triangleright We chose a constant fine grid with $\delta = T/32$. Free parameters are Δ (i.e. the number of points on the coarse grid) and n the number of parareal iterations.

Results (Ia): The Black-Scholes Case

K	J	Δ	n = 1	n = 2	n = 3	n = 4
2	16	0.666667	0.60338	0.152339	0.0171122	0.000833293
4	8	0.4	0.237451	0.0437726	0.00217885	0.000725382
8	4	0.222222	0.0854814	0.0156243	0.000735309	0.000515332
16	2	0.117647	0.0257407	0.00120513	0.000439038	0.000262921
2	16	0.666667	0.5912463	0.1434691	0.0418341	0.0414722
4	8	0.4	0.2245711	0.0743709	0.0225051	0.0224303
8	4	0.222222	0.0740923	0.0205441	0.0072178	0.0072066
16	2	0.117647	0.0194701	0.0021758	0.0021592	0.0021509

Table: Absolute error from the American payoff computed on the fine grid by a sequential LSMC Tsitsikli-Van Roy algorithm and the same computed using the parareal iterative algorithms (Top: TLPRAO vs Bottom:TLPRAOA). The coarse grid has K intervals; the coarse time step is Δ/K ; the fine grid has a fixed number of points hence each interval $(t_k, t_{t_{k+1}})$ it has J sub-intervals.

Remark. True Longstaff-Schwartz *LSMC* algorithm based on running optimal stopping times yields similar results.

Results (Ib): The Black-Scholes Case

Figure: Black-Scholes case: Errors on the payoff versus Δ on the left for several values of n and versus n on the right for several values of Δ . Both graphs are for Algorithm $\ref{algorithm}$ in log-log scales and indicate a general behavior of the error ϵ not incompatible with (1).

Results(II): speed-up induced by parallel implementation of the parallel method

Speed-up versus the number of processors, i.e. the parareal CPU time on a parallel machine divided by the parareal CPU time on the same machine but running on one processor. There are two levels only; the parameters are $N_{proc} = 1, 2, \dots, 32, n = 2$ and J = 100 so as to keep each processor fully busy.

Results (III): CEV model

The diffusion coefficient now depends on the price of the risky asset: $\sigma(x,t) = \sigma_0 x^{0.7}$ (i.e. the volatility itself is given by $\sigma_0 x^{-0.3}$). All parameters have the same values as above.

Figure: Constant Elasticity case. Left: Errors on the price $vs \Delta$ on the left for several values of n. Right: versus n on the right for several values of Δ . Both graphs are for Algo. TLPRAO in log-log scales and indicate a general behavior of the error ϵ not incompatible with (1).