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The Parareal Method for an ODE

[J.-L. Lions-Maday-Turinici, 2001]. Parareal = Para-Real = Parallel + Real Time.

e Consider an ODE on [0, T],
x = b(t,x), x(0)= xo.

@ To solve numerically this ODE, one introduces the Euler scheme with
step A = % K € N*, starting at xp: let

_ kT
[0, T] = Uc}f l[tka tir1)s  th = K

and the standard Euler operator

= En(xe,, tk) == x¢, + Ab(ty, x,), k=0:K—1.
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The Parareal Method for an ODE
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e We divide each interval [ty, tx 1] into smaller subintervals

J-1
[tes tia] = (U [tws el
0
-
h td=—=—.
where we Set 7 K

tkd-:tk—i-j&jZOZJ.
o Let & and £, be the Euler operators with time steps § < A.

Then, starting from x; € RY:
° Eél(xk, te) = Es(te,y—1,-) 0 - - 0 E(xk, tx) is the high precision solution
at 1 starting from x, at time .
o Ex(xk, tx) is the low precision solution at tx 1 starting from xj at .
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The Parareal Method for an ODE

@ The Parareal scheme is an iteration loop over the forward loop in time:

o Initialize:  x2,; =xP +Ea(xP, tk), k=0,...,K—1, x§ = x(0).
o forn=0,...,N—1
n+1 _ X(O)

for k=0,...,K—-1
XI:LLll = EA(X£+17 tk) + Sg(xf, ti) — Ealxgs t) -

low precision high precision at n
end (k)
end (n).

@ The coarse grid scheme is corrected by the error between the fine grid
prediction and the the old coarse grid scheme computed at the former
“old” value.

@ For more see e.g. Martin Gander (SINUM, 2007).

e Remark. Note that x] is the solution of the Euler scheme with fine
step & when as long as k < n.

Gilles Pagés (LPSM-JLL) Para-Real Monte Carlo for American/Bern July 4, 2018 4 /24



The Parareal Method for an ODE (parallel implementation)

@ When the computation of the (x])x=o:x is completed (which is “fast”
since A is “large”).

o The K “refiners” (& (xf, tx) — Ea(xf. tx)), k =0: K — 1 can be
computed in parallel.

@ For a fixed n, the global complexity is higher than a single fine Euler
scheme (due to two coarse Euler schemes computations).

@ but parallelization dramatically speeds up the execution (by almost a
K factor).

@ The parareal algorithm was devised for parallel architectures.

@ A multilevel version can be derived by considering in cascade each fine
level as a coarse level on which is defined a finer parareal scheme.
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The Parareal Method for an SDE (1)

@ Consider a d-dim Brownian diffusion process
dXt = b(f,'7 Xt)dt+0(t, Xt)th, XO iU w q—SBM

with standard Lipschitz assumptions on b : [0, T] x R — R and
o[0, T] x RY — M(d, q,R);

@ Replace mutatis mutandis the ODE Euler operator by the SDE Euler
operator:

En(x,t,Z) = x + Ab(t,x) + VAo (t,x)Z, Z~ N(0,1y).
@ As before, let § = %, so that
[t, tkt1] = Uf:_[)l[th7 thj+1)
with
tejpr =tej+0, j=0:J—1 and tx =ty = ty_1 .

Gilles Pagés (LPSM-JLL) Para-Real Monte Carlo for American/Bern July 4, 2018 6 /24



Generate one/M path(s) of the Parareal scheme for an SDE

Initialization @ Generate i.i.d. N(0, Iy)-distributed fine increments:
(Zkvf k=1:K j=1:J"

. Zp bt Z
@ Coarse increments: Set 7, = k™ TokJ

7 k=1:K.

@ Initialize of the parareal scheme:
Xg(ﬂ = 5A(Xg(, tk,Zk), k=0:K-1.
forn=0: N —1 (parareal iterations)
for k=0 : K—1 (forward time loop):
@ Fine grid solution iXt(Z;}JJ:O on [t, tk+1] with step 0, started
at ty o = tx from Xt’}(:
35, v Ton o (Y, S
th’: = th(’ th,,;u =& (th;', kg Zk7j+1), j=0:J-1.
@ Coarse grid solution at txy1: X = Ea (f(t’l’fl, th, Zk).-
© Parareal updating: )?{;:11 = X2 +XO" - Xn

B T te,y [

end k-loop.
end n-loop. [[ For M paths repeat M times inside each loop (or //1 ]]-
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The Parareal Method for an SDE: convergence rate |

Theorem 1 [P., Pironneau, Sall, '17, SIFIN '18] Let n < K€ N.
Assume (b, o) € CO([0, T] x R9T94®9) C2 in x with Lipschitz continuous
spatial derivatives, uniformly in t € [0, T]. Let (X ) k be the fine Euler

scheme with step J starting from Xy € L%(P).
There exists a real constant C only depending on T and the Lipschitz
constants and norms of b, b', b", 0, 0’, 0", such that:

o for ke {n,..., K},

X2 — X2 |2y < (CA) \/ IXE = X 2wy
n+—
- (ca) 1/(,,).

o forall 0 < k <n: )A(t’z = X{ (coincide with the fine Euler scheme).
> Extends & improves [Bal-Maday, '04] (diffusion supposed to be simulable).

> Contains ODE error bounds when o = 0.
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The Parareal Method for an SDE: convergence rate ||

Theorem 2 [P., Pironneau, Sall, '17]
For fixed A, ¢ and n parareal iterations, the final and uniform errors satisfy

=~ n+1 K
mas IR0~ Xz < (€)% (1)

(CA)> _nona
< —Fc¢ 2 T

and

O

H max \5\({’ < —

k=0:K =~k L2(P) (n+1)!

o Interchanging max and L?-norm is costly: ()A(tl)k:o:K is not a Markov
chain.

@ Unfortunately (7) for linear problems like computation of expectations,

a naive parallelization (“path by path”) is more efficient. .
o Fortunately, not all problems in numerical probablllty are ||near
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American/Bermudan Options & Tsitsiklis-Van Roy (&
Longstaff-Schwartz)

@ Dynamics: Brownian diffusion process or its Euler scheme.

e Bermudan/American payoff: ¢(x) = (K — x)* the Put payoff, fair
price := Snell envelope:

V; = P-esssup {E(@(XT) | ]—"tW), 7 :Q — [t, T] stopping time )}

e Markov property: V;y = v(t, X;), with v solution to the parabolic
Variational Inequality:

max(0iv + Lv,o —v)=0,t€ [0, T), v(T,)=¢

butifd >3or4...
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Time discretization

o Switch from (Xt)¢c[o, 7] to the Euler schemes like (Xt ) k=0:K -

@ Discrete time Snell envelope:
V¢, = P-esssup {E(gp()_(T) | ]:t'iv), 7:Q — [tk,..., tx = T] stopping time )}

e Markov property: Vi, = v(tk,)_(tk), k=0:K.
e Backward Dynamic Programming Principle: The (F%, )x-Snell
envelope satisfies

Vi1 = o(XT), Vi, = max (ap()_ﬁk), Ctk), k=0:K-1,
with ka = E[ka+1 | ftk] = ]E[Vtk+1 ‘ th] = Ctk(th)
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Regression a la Titsiklis-Van Roy
e Projection on span{t,(Xe,), £ =1: L} =~ L?(c(Xy,)) (T.& van R.)

J
ka = E(tlﬁ)_(tk) = Za}i,jwj()_(tk)

j=1
L 2
with o} = argmin,cpE <V(tk+1, Xepp) — Z akag(th)>
(=1

v(tk, th) = max (‘P()_(tk)a E(tm)_(tk))-

@ Explicit solution involving a Gram matrix, etc.
e v(0,x0) ~ V.
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. i . 1 M ..
® Monte Carlo version: with form Px, to ;>4 5Xt(,:") (empirical
measure of i.i.d. copies).

@ Implementation by Monte-Carlo means that the M paths speak to
each other to perform the regression: It is a non linear problem.

@ Hence naive parallelization is a problem!
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Parareal Decomposition for American Options

initialization : Simulate V2(w) = ¢(X%(w)), Compute

Vk = max{o( ) ]E[Vk+1‘ ]} k=K-1:0.

for n=0: N —1 (parareal iterations) Compute V! = V”+1 ¢(X”+1)
fork=K-1,...,0 :
@ On each (tk, tks1), from V,fj = IE(V,:’H |)~<,fj) compute

V:‘;j" — max {99()?;1-,") E[V,fj+1|

@ Compute V" = max {p(X/ 1), B[V, X0}
n n 170, v,
Q Set V=l + Vo — Vi
end (backward) k-loop

end n-loop
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With projections (d = 1 for simplicity)

Denote by P3f the projection of f on the monomials 1,x, ..., x".

initialization : From V2(w™) = o(X%(w™)), m=1: M Compute

Ve = max{o(X9), BE[VL 4 IXE]}, k=K—1:0.

for n=10:N—1 (parareal iterations) Compute V1 = V1 — p(X1+1)
fork=K-1,...,0 :
@ On each (tk, tks1), from V,fj = ‘BE(V£+1 |)~(,fj) compute

Vo =max {p(X)"), PE[V, ]

J+1‘)~<§7]}J =J—-1...0.

@ Compute V" = max { (X[ 1), PE[V/1IXI]).
© Set V=Vt 4 Vip -V
end (backward) k-loop

end n-loop
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Pros and cons

> Pros: All fine grid computations are local and can be assigned to
separate processors: phase 1 in k-loop.

> Cons: ()A(,f)k:o:K is not a Markov chain: it keeps memory of the former
iterations (in n).

Hence
Vit = Vit = (X, VT = max (XY, BE[VTIXET)
k=K-1:0

is not an (Fy, )« Snell envelope...So we will be in theoretical trouble
in the error analysis because of phase 2 in k-loop.

This led us to introduce a variant
\/n+1 _ /n+l \/0,n /n
Vi V + Vk’0 -V

for which we could obtain theoretical results.
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Parareal for American Option (I1)

Proposition (True Snell envelopes) Let (for k =0 : K)

ty

oA o oA ¥
Vool = ]P’—esssupTethE[go( INFul, Ve © = IP—esssupTej—th[ga(Xf)\ftk]

be the Snell envelopes of the parareal scheme (@()?tl))k:O:K and of the
fine Euler scheme ()_(g()kzo:K observed at instants ty.

n 1
(CA)z <1+A)2 _n(nz—l)%.

T e

/AN WZANY
H max ’Vtk thk ‘ L2 [(;O]Llpm

k=0,....K

(Note that (V kzo.....k is the coarse Snell envelope of the fine Euler scheme). At a

fixed time t, we have the better estimate

o L (K41 k
Hth’ _ th’5H2 < [@]Lip(CA) \/(n—|—1> o <n+1>.
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Forcing Markov property: pseudo-Snell envelopes

Proposition (Pseudo-Snell envelopes) Let (for k =0 : K)

~

An
Vi

k

= ]P’—esssupTethE[@(ATn)’;(tk]v Vie

fk

=P- esssupTeTfE[sO( )|th]

be the Pseudo-Snell envelopes of the parareal scheme (c,o()A(t’,’())k:O;K and of
the fine Euler scheme ()_(ti)k:o:K observed at instants t.

1

n— 1
CA) = A\ 2 _n(n-1)
[@]Llp(i) <1+T) e T

A,n WZANY
maXx ’Vtk Vtk ‘ L2 (n+1)|

(5P

Remark. The price to pay for non-Markovian feature of ()?,f) is higher.

Gilles Pagés (LPSM-JLL) Para-Real Monte Carlo for American/Bern July 4, 2018 18 / 24



Final result for the modified algorithm

We consider the modified parallel algorithm

Vn+l Vn+1 Vé n Vn

tk,0 i

k= K-1

where V0 is the Snell envelope of the Euler scheme with step A.

There exists a real constant C = Cp, , 7 such that, for every k =0: K — 1,

max HV{;H - \_/ti

5 < [W]Lip C\/E

Proof. The triangle inequality implies

|V =V |, < 1V = Ve, + 1V - Vi,

+ Ve = Vil

n

(C'a)E (), A\ g

T
(c’n)"= Ay _nnng

A (1) g
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Results (1): The Black-Scholes Case

> Underlying asset is given by the Black-Scholes SDE,
b(x,t) =rx o(x,t) =oox with r=0.05 00=0.2
and (x) = (x:):
xo =36, k=40, T = 2.
> True price = 4.478 (by VI-PDE with finite difference).

> Projection is performed on {1, x,x*} and the Monte Carlo froward simulation with
M = 100000 paths.

> We implemented the “natural” parareal algorithm with a Tsitsiklis-Van Roy algorithm
(BDPP on the continuation function)
Vet = vt 4 v;:; — Vi, k=K-1

> We chose a constant fine grid with § = T /32. Free parameters are A (i.e. the

number of points on the coarse grid) and n the number of parareal iterations.
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Results (1a): The Black-Scholes Case

K J A n=1 n=2 n=3 n=24

2 16 | 0.666667 0.60338 0.152339 0.0171122 0.000833293
4 8 0.4 0.237451 0.0437726 0.00217885 | 0.000725382
8 4 | 0.222222 || 0.0854814 | 0.0156243 | 0.000735309 | 0.000515332
16 | 2 | 0.117647 || 0.0257407 | 0.00120513 | 0.000439038 | 0.000262921
2 16 | 0.666667 || 0.5912463 | 0.1434691 0.0418341 0.0414722
4 8 0.4 0.2245711 0.0743709 0.0225051 0.0224303
8 4 | 0.222222 || 0.0740923 | 0.0205441 0.0072178 0.0072066
16 | 2 | 0.117647 || 0.0194701 0.0021758 0.0021592 0.0021509

Table: Absolute error from the American payoff computed on the fine grid by a

sequential LSMC Tsitsikli-Van Roy algorithm and the same computed using the
parareal iterative algorithms (Top: TLPRAO vs Bottom:TLPRAQA). The coarse
grid has K intervals; the coarse time step is A/K; the fine grid has a fixed
number of points hence each interval (t,ty, ) it has J sub-intervals.

Remark. True Longstaff-Schwartz LSMC algorithm based on running
optimal stopping times yields similar results.

Gilles Pagés (LPSM-JLL)

Para-Real Monte Carlo for American/Bern

July 4, 2018

21 /24



Results (Ib): The Black-Scholes Case

1
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Figure: Black-Scholes case: Errors on the payoff versus A on the left for several
values of n and versus n on the right for several values of A. Both graphs are for
Algorithm 77 in log-log scales and indicate a general behavior of the error € not

incompatible with (1).
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Results(I1): speed-up induced by parallel implementation of
the parallel method

speed-up

Theoretical —+—
Parareal ——

number of processors

Speed-up versus the number of processors, i.e. the parareal CPU time on a
parallel machine divided by the parareal CPU time on the same machine but
running on one processor. There are two levels only; the parameters are

Nproc =1,2,...,32, n=2 and J =100 so as to keep each processor fully busy.
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Results (111): CEV model

The diffusion coefficient now depends on the price of the risky asset:
o(x, t) = aox%7 (i.e. the volatility itself is given by oox~%-3). All parameters have

the same values as above.

1

01 F

.01 F ~

L2 error
°
2

0001 £
Iteration k=1 —+—
lteration k=2 —>—

Iteration k=3
Iteration k=4 —5—

0.0001

size of time step

L2 error

0.001

0.0001

Dt=0.6667 —+—
Dt=0.4 —>—

Dt=0.2222

Dt=0.1176 —E—

iteration

Figure: Constant Elasticity case. Left: Errors on the price vs A on the left for several
values of n. Right: versus n on the right for several values of A. Both graphs are for

Algo. TLPRAO in log-log scales and indicate a general behavior of the error € not

incompatible with (1).
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