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The Dispersion

In the following, we let Pn be a point set in [0, 1]d with #Pn = n.

We define the dispersion of Pn by

disp(Pn) := sup
B : B∩Pn=∅

|B|,

where the sup is over all (axis-parallel) boxes B = I1 × · · · × Id .

That is, we’re looking for the volume of the “largest empty box”.
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The Minimal Dispersion

In particular, we are interested in the best possible dispersion.

For this, we introduce the n-th minimal dispersion

disp(n, d) := inf
Pn

disp(Pn)

as well as its inverse

N(ε, d) := min
{
n : disp(n, d) ≤ ε

}
.
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Applications

Although quite unstudied, there are already interesting applications:

interesting geometric quantity (Rote, Hlawka, Tichy)

optimization (Niederreiter, L’Ecuyer)

Approximation of rank-1 tensors (Bachmayr, Dahmen, DeVore,
Grasedyk; Novak, Rudolf; Krieg, Rudolf)

Marcinkiewicz-type discretization, i.e., approximation of Lp-norms
of certain trig. polynomials using function values (Temlyakov)

However, we do not have a precise equivalence to a numerical
problem. (As far as I know...)
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Discrepancy

A more popular quantity is the discrepancy of a point set Pn, which
is defined by

D(Pn) := sup
B

∣∣∣∣#(B ∩ Pn)

n − |B|
∣∣∣∣ , D(n, d) = inf

Pn
D(Pn).

We know that

D(Pn) ≈ sup
f : ‖f ′‖1≤1

∣∣∣∣∣∣1n
∑

x∈Pn

f (x) −
∫
[0,1]d

f (y)dy

∣∣∣∣∣∣
and this shows the connection of such geometric problems to various
other field of mathematics.
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Discrepancy: Known results

There are plenty of results on D(n, d), e.g.,

D(n, 2) � log(n)
n (Schmidt)

log
d−1

2 (n)
n .d D(n, d) .d

logd−1(n)
n (Roth; Halton)

log
d−1

2 + c
d2 (n)

n .d D(n, d) (Bilyk, Lacey, Vagharshakyan)

The order (in n) of D(n, d) is still unknown!

Conjecture: D(n, d) � logd−1(n)
n or D(n, d) � log

d
2 (n)
n
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Discrepancy: Known results II

The previous results do not lead to any nontrivial and explicit-in-d
bound on

n(ε, d) := min
{
n : D(n, d) ≤ ε

}
.

But it was proven subsequently that

d
ε

. n(ε, d) .
d
ε2 (Hinrichs;HNWW )

or d/n . D(n, d) .
√

d/n.

That is, n(ε, d) is linear in d , but we don’t know the order in ε!

Conjecture:

We do not even have one...
(Some conjecture that lim inf

ε→0
εcn(ε, d) ≥ (1 + γ)d for c < 2 and γ > 0.)
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Dispersion: Known results

It is rather easy to prove

disp(n, d) �d
1
n

(
or N(ε, d) �d

1
ε

)
.

Hence, we know the optimal order in n.

Regarding the d-dependence, it was proven recently that

N(ε, d) &
log(d)
ε

(Aistleitner, Hinrichs, Rudolf)

N(ε, d) .
d log(1/ε)

ε
(Rudolf)

N(ε, d) . ε−ε−2 log(d) (Sosnovec)
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New Result

Known:
log(d)
ε

. N(ε, d) . ε−ε−2 log(d)

Theorem (U, Vyb́ıral, ’18)
For d ≥ 2 and ε < 1

4 , we have

N(ε, d) ≤ 27 log2(d)
( log2(1/ε)

ε

)2
.

Actually, we show that random points chosen in
[

ε
2 , 1−

ε
2
]d satisfy

this bound with positive probability.
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Explicit constructions

The only explicit (i.e. polynomial-time) constructions known so far are

digital nets: disp(Pn) ≤
27d+2

n (Larcher)

sparse grids: disp(Pn) ≤ n−
1

log2(d) (Krieg)

Work in progress: For some c > 0, there are explicit Pn with
(still with Jan)

disp(Pn) .
( log(d)

n

)c
.

(Based on deep results from the theory of self-correcting codes.)

Mario Ullrich The dispersion depends logarithmically on the dimension



Dispersion Discrepancy Results End

Explicit constructions

The only explicit (i.e. polynomial-time) constructions known so far are

digital nets: disp(Pn) ≤
27d+2

n (Larcher)

sparse grids: disp(Pn) ≤ n−
1

log2(d) (Krieg)

Work in progress: For some c > 0, there are explicit Pn with
(still with Jan)

disp(Pn) .
( log(d)

n

)c
.

(Based on deep results from the theory of self-correcting codes.)

Mario Ullrich The dispersion depends logarithmically on the dimension



Dispersion Discrepancy Results End

Thank you!
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