Dispersion	Discrepancy	Results	End
000	000	000	

The inverse of the dispersion depends logarithmically on the dimension (joint work with J. Vybíral)

> Mario Ullrich Johannes Kepler University Linz

> > Rennes, July 2018

Dispersion ●○○	Discrepancy	Results	End
The Dispersion			

In the following, we let \mathcal{P}_n be a **point set** in $[0,1]^d$ with $\#\mathcal{P}_n = n$.

We define the **dispersion** of \mathcal{P}_n by

$$\operatorname{disp}(\mathcal{P}_n) := \sup_{B: B \cap \mathcal{P}_n = \emptyset} |B|,$$

where the sup is over all (axis-parallel) boxes $B = I_1 \times \cdots \times I_d$.

That is, we're looking for the volume of the "largest empty box".

Dispersion ○●○	Discrepancy	Results	End
The Minimal Disr	persion		

In particular, we are interested in the best possible dispersion.

For this, we introduce the *n*-th minimal dispersion

$$\operatorname{disp}(n,d) := \inf_{\mathcal{P}_n} \operatorname{disp}(\mathcal{P}_n)$$

as well as its inverse

$$N(\varepsilon, d) := \min\{n: \operatorname{disp}(n, d) \leq \varepsilon\}.$$

Dispersion	Discrepancy	Results	End
Applications			

Although quite unstudied, there are already interesting applications:

- interesting geometric quantity (Rote, Hlawka, Tichy)
- optimization (Niederreiter, L'Ecuyer)
- Approximation of rank-1 tensors (Bachmayr, Dahmen, DeVore, Grasedyk; Novak, Rudolf; Krieg, Rudolf)
- Marcinkiewicz-type discretization, i.e., approximation of L_p-norms of certain trig. polynomials using function values (Temlyakov)

However, we do not have a precise equivalence to a numerical problem. (As far as I know...)

Dispersion 000	Discrepancy ●○○	Results	End
Discrepancy			

A more popular quantity is the **discrepancy** of a point set \mathcal{P}_n , which is defined by

$$D(\mathcal{P}_n) := \sup_{B} \left| \frac{\#(B \cap \mathcal{P}_n)}{n} - |B| \right|, \qquad D(n,d) = \inf_{\mathcal{P}_n} D(\mathcal{P}_n).$$

Dispersion	Discrepancy	Results	End
000	●○○	000	
Discrepancy			

A more popular quantity is the **discrepancy** of a point set \mathcal{P}_n , which is defined by

$$D(\mathcal{P}_n) := \sup_{B} \left| \frac{\#(B \cap \mathcal{P}_n)}{n} - |B| \right|, \qquad D(n,d) = \inf_{\mathcal{P}_n} D(\mathcal{P}_n).$$

We know that

$$D(\mathcal{P}_n) \approx \sup_{f: \|f'\|_1 \leq 1} \left| \frac{1}{n} \sum_{x \in \mathcal{P}_n} f(x) - \int_{[0,1]^d} f(y) \, \mathrm{d}y \right|$$

and this shows the connection of such geometric problems to various other field of mathematics.

Dispersion	Discrepancy ○●○	Results	End
Di	17 1		

Discrepancy: Known results

There are plenty of results on D(n, d), e.g.,

•
$$D(n,2) \asymp \frac{\log(n)}{n}$$
 (Schmidt)
• $\frac{\log^{\frac{d-1}{2}}(n)}{n} \lesssim_d D(n,d) \lesssim_d \frac{\log^{d-1}(n)}{n}$ (Roth; Halton)
• $\frac{\log^{\frac{d-1}{2}}+\frac{c}{d^2}(n)}{n} \lesssim_d D(n,d)$ (Bilyk, Lacey, Vagharshakyan

The order (in n) of D(n, d) is still unknown!

Conjecture: $D(n,d) \asymp \frac{\log^{d-1}(n)}{n}$ or $D(n,d) \asymp \frac{\log^{\frac{d}{2}}(n)}{n}$

Dispersion	Discrepancy	Results	End
	000		
D:			

Discrepancy: Known results II

The previous results do not lead to any nontrivial and **explicit-in**-d bound on

$$n(\varepsilon, d) := \min\{n: D(n, d) \le \varepsilon\}.$$

But it was proven subsequently that

$$rac{d}{arepsilon} \lesssim n(arepsilon, d) \lesssim rac{d}{arepsilon^2}$$
 (Hinrichs; HNWW)

or $d/n \lesssim D(n,d) \lesssim \sqrt{d/n}$.

That is, $n(\varepsilon, d)$ is **linear** in d, but we don't know the order in ε ! **Conjecture:**

Dispersion	Discrepancy	Results	End
000	000	000	
D:	17 1. 1		

Discrepancy: Known results II

The previous results do not lead to any nontrivial and **explicit-in**-d bound on

$$n(\varepsilon, d) := \min\{n: D(n, d) \le \varepsilon\}.$$

But it was proven subsequently that

$$rac{d}{arepsilon} \lesssim n(arepsilon, d) \lesssim rac{d}{arepsilon^2}$$
 (Hinrichs; HNWW)

or $d/n \lesssim D(n,d) \lesssim \sqrt{d/n}$.

That is, $n(\varepsilon, d)$ is **linear** in d, but we don't know the order in ε !

Conjecture: We do not even have one...

(Some conjecture that $\liminf_{\varepsilon \to 0} \varepsilon^c n(\varepsilon, d) \ge (1 + \gamma)^d$ for c < 2 and $\gamma > 0$.)

Dispersion	Discrepancy	Results ●00	End

Dispersion: Known results

It is rather easy to prove

$$\operatorname{disp}(n,d) \asymp_d \frac{1}{n} \qquad \left(\operatorname{or} \quad N(\varepsilon,d) \asymp_d \frac{1}{\varepsilon} \right).$$

Hence, we know the optimal order in n.

Regarding the d-dependence, it was proven recently that

•
$$N(\varepsilon, d) \gtrsim \frac{\log(d)}{\varepsilon}$$
 (Aistleitner, Hinrichs, Rudolf)
• $N(\varepsilon, d) \lesssim \frac{d \log(1/\varepsilon)}{\varepsilon}$ (Rudolf)
• $N(\varepsilon, d) \lesssim \varepsilon^{-\varepsilon^{-2}} \log(d)$ (Sosnovec)

Dispersion	Discrepancy 000	Results ○●○	End
New Result			

Known:

$$rac{\log(d)}{arepsilon}\,\lesssim\, \textit{N}(arepsilon,d)\,\lesssim\,arepsilon^{-arepsilon^{-2}}\log(d)$$

Theorem (U, Vybíral, '18)

For $d \geq 2$ and $\varepsilon < \frac{1}{4}$, we have

$$\mathsf{N}(arepsilon,d) \,\leq\, 2^7 \log_2(d) \left(rac{\log_2(1/arepsilon)}{arepsilon}
ight)^2$$

Actually, we show that random points chosen in $\left[\frac{\varepsilon}{2}, 1-\frac{\varepsilon}{2}\right]^d$ satisfy this bound with positive probability.

Dispersion	Discrepancy	Results	End
000	000	○○●	
Explicit construction	ons		

The only explicit (i.e. polynomial-time) constructions known so far are

• digital nets:
$$\operatorname{disp}(\mathcal{P}_n) \leq \frac{2^{7d+2}}{n}$$
 (Larcher)

• sparse grids:
$$\operatorname{disp}(\mathcal{P}_n) \leq n^{-\frac{1}{\log_2(d)}}$$
 (Krieg)

Dispersion 000	Discrepancy	Results ○○●	End
Explicit construction	ons		

The only explicit (i.e. polynomial-time) constructions known so far are

• digital nets:
$$\operatorname{disp}(\mathcal{P}_n) \leq \frac{2^{7d+2}}{n}$$
 (Larcher)
• sparse grids: $\operatorname{disp}(\mathcal{P}_n) \leq n^{-\frac{1}{\log_2(d)}}$ (Krieg)

Work in progress: For some c > 0, there are explicit \mathcal{P}_n with (still with Jan)

$$\operatorname{disp}(\mathcal{P}_n) \lesssim \left(\frac{\log(d)}{n}\right)^c$$

(Based on deep results from the theory of self-correcting codes.)

Dispersion	Discrepancy	Results	End

Thank you!