Generation of True Random Numbers using quasi-Monte Carlo methods

Ana I Gomez, Domingo Gómez-Pérez, Florian Pausinger

Universidad de Cantabria, Queen’s University Belfast

MCQMC 2018
TRNGs use physical processes to generate random numbers. Some characteristics

- Underlying physical process must be not possible to control
- Principle used to extract entropy and physical phenomenon limits the bit rate

Randomness source available from hardware accelerators (FPGAs, CPDs, ASICs).
Application to embedded security systems (cryptographic system-on-chip).
Methodology AIS 31
Introduction

Challenges in modern embedded TRNG design

i Finding a good quality source of randomness available in the digital technology

ii Finding an efficient and robust principle of randomness extraction

iii Guaranteeing the security (e.g. by a robust design or by an efficient online testing).
Introduction

Mathematical assessment of the security: Lower bound of entropy per output bit

\[H(X) = -p \cdot \log_2(p) - (1 - p) \cdot \log_2(p), \]

where \(X \) is a random variable and \(p \), bit probability

- Designs based on a stochastic model of the random process.
- If minimal entropy per output bit approaches 1, then the TRNG is an ideal RNG.
TRNG Design

TRNG design by Cherkaoui et al. [1] that exploits the jitter noise of events propagating in a self-timed ring

- Self-timed rings are oscillators in which several events can evolve evenly-spaced in time.
- Jitter noise make the significant instants of a digital signal vary from their ideal position in time.

The distance between two events is given by the phase difference

\[\Delta \phi = \frac{T}{2L} \]

where \(T \), oscillation period. \(L \), number of stages of the design.
stochastic model

\{ C_i \}_{i=0}^{L-1} : \text{STR output signals, ordered by its mean time arrival } t_i
\{ X_i \}_{i=0}^{L-1} : \text{random variable represents time position of each event, probability distribution } \mathcal{N}(t_i, \sigma^2)

For a sampling time \(t \), if \(\sigma < \Delta \phi \)

\[
P[X_j < t] = \Phi\left(\frac{t - t_j}{\sigma}\right), \quad P[X_{j-1} < t] = \Phi\left(\frac{t - t_j - \Delta \phi}{\sigma}\right)
\]

Then, the probability that the output bit value at time \(t \) is equal to \(u \) is the probability of the XOR of the previous value

\[
P_u(t) = 1 - \Phi\left(\frac{t - t_j}{\sigma}\right) - \Phi\left(\frac{t - t_j - \Delta \phi}{\sigma}\right)
+ 2\Phi\left(\frac{t - t_j}{\sigma}\right)\Phi\left(\frac{t - t_j - \Delta \phi}{\sigma}\right)
\]
stochastic model

Figure: H versus t. $\sigma = \Delta \phi / 4$ (Blue line), $\sigma = \Delta \phi / 2$ (red line), corresponds to $\sigma = \Delta \phi$ (green line)

Ana I Gomez, Domingo Gómez-Pérez, Florian

stochastic model

Non deterministic sampling time (jitter noise), t is the realization of a random variable $Z \sim N(t_s, \sigma_{\text{clk}}^2)$

$$P[X_j < Z] = \int_{-\infty}^{\infty} \Phi\left(\frac{t' - t_j}{\sigma}\right) \cdot f_z\left(\frac{t' - t}{\sigma_{\text{clk}}}\right) dt'$$

$$P[X_{j-1} < Z] = \int_{-\infty}^{\infty} \Phi\left(\frac{t' - t_j - \Delta\phi}{\sigma}\right) \cdot f_z\left(\frac{t' - t}{\sigma_{\text{clk}}}\right) dt'$$

$$P_u(t) = 1 - P[X_j < Z] - P[X_{j-1} < Z] + 2 \cdot P[X_{j-1} < Z] \cdot P[X_j < Z]$$
Figure: H versus t. $\sigma = \Delta \phi / 4$ (Blue line), $\sigma = \Delta \phi / 2$ (red line), corresponds to $\sigma = \Delta \phi$ (green line). Continuous line corresponds to $\sigma_{clk} = \sigma / 2$, segmented line to $\sigma_{clk} = \sigma$, and dotted line corresponds to $\sigma_{clk} = 2\sigma$.

Ana I Gomez, Domingo Gómez-Pérez, Florian Pausinger (Universidad de Cantabria, Queen's University Belfast)
Results

Minimum entropy when \(n \) successive input bits are combined into one output bit for

- Random sampling points
 Example: \(\sigma = \frac{\Delta \phi}{4} \), \(H \sim 1 \) after 40 bits

- Uniform distributed sampling points
 Example: \(\sigma = \frac{\Delta \phi}{4} \), \(H \sim 1 \) after 20 bits when \(f_{\text{clock}} = \frac{36}{125} \Delta \phi \)
Open problems

Finding an optimal set of sampling points, regarding:

- Optimal parameters for the underlying digital design
- Several STR with different frequencies

Thanks for your attention!