Discrepancy of digital sequences: new results on a classical QMC topic

Friedrich Pillichshammer ${ }^{1}$

JOHANNES KEPLER UNIVERSITY LINZ

[^0]
Uniform distribution

Consider sequences

$$
\mathcal{S}=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right) \text { in }[0,1)^{s} .
$$

For $N \in \mathbb{N}$ let $\mathcal{S}_{N}=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}\right)$.

Hermann Weyl 1916

\mathcal{S} is uniformly distributed if for all axes parallel boxes $J \subseteq[0,1)^{\text {s }}$:

$$
\lim _{N \rightarrow \infty} \frac{\#\left(\mathcal{S}_{N} \cap J\right)}{N}=\operatorname{Vol}(J)
$$

Uniform distribution

Hermann Weyl 1916

Equivalent:
(1) \mathcal{S} is uniformly distributed;
(2) for every Riemann-integrable $f:[0,1]^{s} \rightarrow \mathbb{R}$ we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(\mathbf{x}_{n}\right)=\int_{[0,1]^{s}} f(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

L_{p}-discrepancy
For $\mathcal{S}_{N}=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}\right)$ the local discrepancy is

$$
\Delta_{\mathcal{S}_{N}}(\mathbf{t}):=\frac{\#\left(\mathcal{S}_{N} \cap[\mathbf{0}, \mathbf{t})\right)}{N}-\operatorname{Vol}([\mathbf{0}, \mathbf{t})) ; \quad \mathbf{t} \in[0,1]^{s}
$$

L_{p}-discrepancy of \mathcal{S} :

For $p \in[1, \infty]$ and $N \in \mathbb{N}$:

$$
L_{p, N}(\mathcal{S})=\left\|\Delta_{\mathcal{S}_{N}}\right\|_{L_{p}\left([0,1]^{s}\right)}
$$

For $p=\infty: L_{\infty, N}=D_{N}^{*}$
(star-discrepancy)
\mathcal{S} uniformly distributed

$$
\Leftrightarrow \quad \lim _{N \rightarrow \infty} L_{p, N}(\mathcal{S})=0
$$

Discrepancy and QMC

Koksma-Hlawka inequality 1961

Let $f:[0,1]^{s} \rightarrow \mathbb{R}$ be with bounded variation $V(f)$ in the sense of Hardy and Krause. Then, for $\mathcal{S}_{N}=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}\right)$,

$$
\left|\int_{[0,1]^{s}} f(\mathbf{x}) \mathrm{d} \mathbf{x}-\frac{1}{N} \sum_{n=0}^{N-1} f\left(\mathbf{x}_{n}\right)\right| \leq V(f) D_{N}^{*}\left(\mathcal{S}_{N}\right)
$$

Known results (finite sequences)

Roth (1954); Schmidt (1977); Bilyk, Lacey, Vagharshakyan (2008)
For every $p \in(1, \infty]$ for every finite sequence \mathcal{S}_{N} in $[0,1)^{s}$

$$
L_{p, N}\left(\mathcal{S}_{N}\right) \geq c_{p, s} \frac{(\log N)^{\frac{s-1}{2}}}{N} \quad \text { and } \quad D_{N}^{*}\left(\mathcal{S}_{N}\right) \geq c_{\infty, s} \frac{(\log N)^{\frac{s-1}{2}+\eta_{s}}}{N}
$$ for some $\eta_{s} \in\left(0, \frac{1}{2}\right)$.

Halász (1981); Schmidt (1972)

For $s=2$ for every \mathcal{S}_{N} in $[0,1)^{2}$

$$
L_{1, N}\left(\mathcal{S}_{N}\right) \geq c_{1,2} \frac{\sqrt{\log N}}{N} \quad \text { and } \quad D_{N}^{*}\left(\mathcal{S}_{N}\right) \geq c_{\infty, 2} \frac{\log N}{N}
$$

Known results (finite sequences)

- There exist \mathcal{S}_{N} in $[0,1)^{s}$:

$$
D_{N}^{*}\left(\mathcal{S}_{N}\right) \lesssim s \frac{(\log N)^{s-1}}{N}
$$

Example: Hammersley-net (1960), digital nets (Niederreiter 1987)

- There exist \mathcal{S}_{N} in $[0,1)^{s}$:

$$
L_{p, N}\left(\mathcal{S}_{N}\right) \lesssim_{s, p} \frac{(\log N)^{\frac{s-1}{2}}}{N}
$$

Example: Chen \& Skriganov (2002), Skriganov (2006), Dick \& Pill. (2014), Markhasin (2015), ...

Finite vs. infinite sequences

Conceptual difference between $L_{p, N}\left(\mathcal{S}_{N}\right)$ and $L_{p, N}(\mathcal{S})$ (Matoušek 1999):

discrepancy of finite \mathcal{S}_{N}	discrepancy of infinite \mathcal{S}
static setting	dynamic setting
N fixed	$N=1,2,3,4, \ldots$
behavior of the whole set	behavior of all initial segments
$\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}\right)$	$\left(\mathbf{x}_{0}\right),\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right), \ldots,\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}\right)$

Known results (infinite sequ.); Method of Prơ̆nov 1985

For every $p \in(1, \infty]$ for every infinite sequence \mathcal{S} in $[0,1)^{s}$

$$
L_{p, N}(\mathcal{S}) \geq c_{p, s} \frac{(\log N)^{\frac{s}{2}}}{N} \quad \text { infinitely often. }
$$

For $p=\infty$ there exist $\eta_{s} \in\left(0, \frac{1}{2}\right)$ such that for every \mathcal{S}

$$
D_{N}^{*}(\mathcal{S}) \geq c_{\infty, s} \frac{(\log N)^{\frac{s}{2}+\eta_{s}}}{N} \quad \text { infinitely often }
$$

For $s=1$ for every \mathcal{S} in $[0,1)$

$$
L_{1, N}(\mathcal{S}) \geq c_{1,1} \frac{\sqrt{\log N}}{N} \quad \text { infinitely often }
$$

and

$$
D_{N}^{*}(\mathcal{S}) \geq c_{\infty, 1} \frac{\log N}{N} \quad \text { infinitely often. }
$$

Known results and open questions

Grand conjecture

For every \mathcal{S} in $[0,1)^{s}: \quad D_{N}^{*}(\mathcal{S}) \geq c_{s} \frac{(\log N)^{s}}{N} \quad$ infinitely often.

There exist \mathcal{S} in $[0,1)^{s}$ such that

$$
D_{N}^{*}(\mathcal{S}) \lesssim s \frac{(\log N)^{s}}{N} \quad \text { for all } N \geq 2
$$

Example: van der Corput sequence (1935), Halton sequence (1960), Sobol' sequence (1967), Faure sequence (1982), ...

Question

For $p<\infty$: Are there sequences \mathcal{S} in $[0,1)^{s}$ such that

$$
L_{p, N}(\mathcal{S}) \lesssim_{p, s} \frac{(\log N)^{\frac{s}{2}}}{N} \quad \text { for all } N \geq 2
$$

U.D. sequences with low discrepancy

- Kronecker sequences: $\mathcal{S}(\boldsymbol{\alpha})=(\{n \boldsymbol{\alpha}\})_{n \geq 0}, \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{R}^{s}$:

$$
\mathcal{S}(\boldsymbol{\alpha}) \text { u.d. } \quad \Leftrightarrow \quad 1, \alpha_{1}, \ldots, \alpha_{s} \text { linearly independent over } \mathbb{Q} \text {. }
$$

- Digital sequences:
- van der Corput sequence (1935)
- pioneering work by Sobol' (1967) and Faure (1982)

Faure, Henri: Discrépance de suites associées à un système de numération (en dimension s). Acta Arith. 41 (1982), no. 4, 337-351.

- general concept Niederreiter (1987)

Digital sequences

Definition (Niederreiter 1987)

- Let $b \in \mathbb{P}$ and let \mathbb{F}_{b} be the finite field of order b;
- choose $C_{1}, \ldots, C_{s} \in \mathbb{F}_{b}^{\mathbb{N} \times \mathbb{N}}$;
- for $n \in \mathbb{N}_{0}$ of the form $n=n_{0}+n_{1} b+n_{2} b^{2}+\cdots$ compute (over \mathbb{F}_{b})

$$
C_{j}\left(\begin{array}{l}
n_{0} \\
n_{1} \\
n_{2} \\
\vdots
\end{array}\right)=:\left(\begin{array}{l}
x_{n, j, 1} \\
x_{n, j, 2} \\
x_{n, j, 3} \\
\vdots
\end{array}\right) ;
$$

- put

$$
x_{n, j}=\frac{x_{n, j, 1}}{b}+\frac{x_{n, j, 2}}{b^{2}}+\frac{x_{n, j, 3}}{b^{3}}+\cdots \quad \text { and } \quad \mathbf{x}_{n}=\left(x_{n, 1}, \ldots, x_{n, s}\right) .
$$

- $\mathcal{S}\left(C_{1}, \ldots, C_{s}\right)=\left(\mathbf{x}_{n}\right)_{n \geq 0}$ is called a digital sequence over \mathbb{F}_{b}.

Digital Kronecker sequences

Field of formal Laurent series over \mathbb{F}_{b} in the variable t :

$$
\mathbb{F}_{b}\left(\left(t^{-1}\right)\right)=\left\{\sum_{i=w}^{\infty} g_{i} t^{-i}: w \in \mathbb{Z}, \forall i: g_{i} \in \mathbb{F}_{b}\right\}
$$

For $g=\sum_{i=w}^{\infty} g_{i} t^{-i}$ define

$$
\{g\}:=\sum_{i=\max \{w, 1\}}^{\infty} g_{i} t^{-i} .
$$

Let $n \in \mathbb{N}_{0}$ with b-adic expansion

$$
n=n_{0}+n_{1} b+\cdots+n_{r} b^{r}, \quad \text { where } n_{i} \in\{0, \ldots, p-1\}
$$

then

$$
n \cong n_{0}+n_{1} t+\cdots+n_{r} t^{r} \in \mathbb{F}_{b}[t] .
$$

Digital Kronecker sequences

Definition

Let $\mathbf{f}=\left(f_{1}, \ldots, f_{s}\right) \in \mathbb{F}_{b}\left(\left(t^{-1}\right)\right)^{s}$. Then the sequence $\mathcal{S}(\mathbf{f})=\left(\mathbf{y}_{n}\right)_{n \geq 0}$ given by

$$
\mathbf{y}_{n}:=\{n \mathbf{f}\}_{\mid t=b}=\left(\left\{n f_{1}\right\}_{\mid t=b}, \ldots,\left\{n f_{s}\right\}_{\mid t=b}\right)
$$

is called a digital Kronecker sequence over \mathbb{F}_{b}.
A digital Kronecker sequence is a digital sequence where

$$
C_{j}=\left(\begin{array}{cccc}
f_{j, 1} & f_{j, 2} & f_{j, 3} & \cdot \cdot \\
f_{j, 2} & f_{j, 3} & f_{j, 4} & \cdot \cdot \\
f_{j, 3} & f_{j, 4} & f_{j, 5} & \cdot \cdot
\end{array}\right) \quad \text { for } f_{j}=\frac{f_{j, 1}}{t}+\frac{f_{j, 2}}{t^{2}}+\frac{f_{j, 3}}{t^{3}}+\frac{f_{j, 4}}{t^{4}}+\cdots
$$

A metrical discrepancy bound

Theorem (Larcher 1998, Larcher \& Pill. 2014)
Let $\varepsilon>0$. For almost all s-tuples $\left(C_{1}, \ldots, C_{s}\right)$ with $C_{j} \in \mathbb{F}_{b}^{\mathbb{N} \times \mathbb{N}}$ the corresponding digital sequences $\mathcal{S}=\mathcal{S}\left(C_{1}, \ldots, C_{s}\right)$ satisfy

$$
D_{N}^{*}(\mathcal{S}) \lesssim b, s, \varepsilon \frac{(\log N)^{s}(\log \log N)^{2+\varepsilon}}{N} \quad \forall N \geq 2
$$

and

$$
D_{N}^{*}(\mathcal{S}) \geq c_{b, s} \frac{(\log N)^{s} \log \log N}{N} \quad \text { infinitely often. }
$$

A metrical discrepancy bound (digital Kronecker sequ.)

Theorem (Larcher 1995, Larcher \& Pill. 2014)
Let $\varepsilon>0$. For almost all $\mathbf{f} \in \mathbb{F}_{b}\left(\left(t^{-1}\right)\right)^{s}$ the corresponding digital Kronecker sequences $\mathcal{S}=\mathcal{S}(\mathbf{f})$ satisfy

$$
D_{N}^{*}(\mathcal{S}) \lesssim_{b, s, \varepsilon} \frac{(\log N)^{s}(\log \log N)^{2+\varepsilon}}{N} \quad \forall N \geq 2
$$

and

$$
D_{N}^{*}(\mathcal{S}) \geq c_{b, s} \frac{(\log N)^{s} \log \log N}{N} \text { infinitely often. }
$$

Classical Kronecker sequences: Joszef Beck (1994).

Digital (t, s)-sequences

For $m \in \mathbb{N}$ denote by $C(m)$ the left upper $m \times m$ submatrix of C.

Definition (Niederreiter)

Given C_{1}, \ldots, C_{s}. If $\exists t \in \mathbb{N}_{0}$: for every $m \geq t$ and for all $d_{1}, \ldots, d_{s} \geq 0$ with $d_{1}+\cdots+d_{s}=m-t$ the
first d_{1} rows of $C_{1}(m)$, first d_{2} rows of $C_{2}(m)$,
are linearly independent over \mathbb{F}_{b}, first d_{s} rows of $C_{s}(m)$,
then $\mathcal{S}\left(C_{1}, \ldots, C_{s}\right)$ is called a digital (t, s)-sequence over \mathbb{F}_{b}.
Examples: generalized Niederreiter sequences (Sobol', Faure, orig. Niederreiter), Niederreiter-Xing sequences, ...

Star discrepancy of digital (t, s)-sequences

Every sub-block $\left(\mathbf{x}_{k b^{m}}, \mathbf{x}_{k b^{m}+1}, \ldots, \mathbf{x}_{(k+1) b^{m}-1}\right)$ is a (t, m, s)-net, i.e., every

$$
J=\prod_{j=1}^{s}\left[\frac{a_{j}}{b^{d_{j}}}, \frac{a_{j}+1}{b^{d_{j}}}\right) \quad \text { with } \operatorname{Vol}(J)=b^{t-m}
$$

contains the right share $\left(=b^{t}\right)$ of elements.
Theorem (Niederreiter 1987)
For every digital (t, s)-sequence \mathcal{S} over \mathbb{F}_{b} we have

$$
D_{N}^{*}(\mathcal{S}) \leq c_{s, b} b^{t} \frac{(\log N)^{s}}{N}+O\left(\frac{(\log N)^{s-1}}{N}\right)
$$

Further results:

- Faure \& Kritzer (2013) smallest $c_{s, b}$
- Faure \& Lemieux $(2012,2014,2105)$
- Tezuka (2013)

Star discrepancy of digital (t, s)-sequences

Levin: $\left(\mathbf{x}_{n}\right)_{n \geq 0}$ in $[0,1)^{s}$ is called d-admissible if

$$
\inf _{n>k \geq 0}\|n \ominus k\|_{b}\left\|\mathbf{x}_{n} \ominus \mathbf{x}_{k}\right\|_{b} \geq b^{-d}
$$

where $\log _{b}\|x\|_{b}=\left\lfloor\log _{b} x\right\rfloor$ and \ominus the b-adic difference.
Theorem (Levin 2017)
Let \mathcal{S} be a d-admissible (t, s)-sequence. Then

$$
D_{N}^{*}(\mathcal{S}) \geq c_{s, t, d} \frac{(\log N)^{s}}{N} \quad \text { infinitely often. }
$$

Examples:

- generalized Niederreiter sequences (Sobol', Faure, orig. Niederreiter)
- Niederreiter-Xing sequences

Levin: positive support for the grand conjecture in discrepancy theory
L_{p} discrepancy of digital $(0,1)$-sequences
Van der Corput sequence $\mathcal{S}(I)$ with $\mathbb{N} \times \mathbb{N}$ identity matrix I:

$$
D_{N}^{*}(\mathcal{S}(C)) \leq D_{N}^{*}(\mathcal{S}(I)) \leq\left\{\begin{array}{l}
\left(\frac{\log N}{3 \log 2}+1\right) \frac{1}{N} \\
\frac{S_{2}(N)}{N} \ldots \text { dyadic sum-of-digits fct. }
\end{array}\right.
$$

and also $L_{2, N}(\mathcal{S}(C)) \leq L_{2, N}(\mathcal{S}(I))$.

L_{p} discrepancy of digital $(0,1)$-sequences

- (Pill. 2004) Van der Corput sequence For all $p \in[1, \infty)$

$$
\limsup _{N \rightarrow \infty} \frac{N L_{p, N}(\mathcal{S}(I))}{\log N}=\frac{1}{6 \log 2}
$$

- (Drmota, Larcher \& Pill. 2005) For $C=\left(\begin{array}{cccc}1 & 1 & 1 & \ldots \\ 0 & 1 & 1 & \ldots \\ 0 & 0 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots\end{array}\right)$

$$
\limsup _{N \rightarrow \infty} \frac{N L_{2, N}(\mathcal{S}(C))}{\log N} \geq c>0
$$

In general digital (t, s)-sequences do not achieve $L_{p}(\mathcal{S}) \lesssim \frac{1}{N}(\log N)^{\frac{s}{2}}$.

- we need additional more demanding properties:

Higher order digital sequences (Josef Dick 2007)

Explicit constructions of order 2 digital sequences

- Let $C_{1}, \ldots, C_{2 s}$ generate a digital $\left(t^{\prime}, 2 s\right)$-sequence over \mathbb{F}_{2}. Example: generalized Niederreiter sequence
- Interlacing:

$$
C_{1}=\left(\begin{array}{c}
\vec{c}_{1,1} \\
\vec{c}_{1,2} \\
\vdots
\end{array}\right), C_{2}=\left(\begin{array}{c}
\vec{c}_{2,1} \\
\vec{c}_{2,2} \\
\vdots
\end{array}\right) \rightarrow E_{1}=\left(\begin{array}{c}
\vec{c}_{1,1} \\
\vec{c}_{2,1} \\
\vec{c}_{1,2} \\
\vec{c}_{2,2} \\
\vdots
\end{array}\right)
$$

Theorem (Dick 2007)

The digital sequence generated by E_{1}, \ldots, E_{s} is an order 2 digital (t, s)-sequence over \mathbb{F}_{2} with $t=2 t^{\prime}+s$.

L_{p}-discrepancy of order 2 digital sequences

Theorem (Dick, Hinrichs, Markhasin, Pill. 2017)
For every $p \in[1, \infty)$ and every order 2 digital (t, s)-sequence \mathcal{S} over $\mathbb{F}_{2}+$ additional property we have

$$
L_{p, N}(\mathcal{S}) \lesssim_{p, s} 2^{t} \frac{(\log N)^{\frac{s}{2}}}{N} \quad \text { for all } N \geq 2 .
$$

Theorem (Dick \& Pill. 2014)
Explict construction of order $\mathbf{5}$ digital sequence over \mathbb{F}_{2} :

$$
\begin{aligned}
L_{2, N}(\mathcal{S}) \lesssim s & \frac{(\log N)^{\frac{s-1}{2}}}{N} \sqrt{S_{2}(N)} \quad \text { for all } N \geq 2 \\
& \uparrow \text { dyadic sum-of-digits function }
\end{aligned}
$$

L_{p}-discrepancy of order 2 digital sequences

Littlewood-Paley type estimate

Let $p \in(1, \infty), \bar{p}=\max (p, 2)$ and $h_{\mathrm{j}, \mathrm{m}}$ are the Haar functions on $[0,1)^{s}$.

$$
\|f\|_{L_{p}\left([0,1)^{s}\right)}^{2} \lesssim_{p, s} \sum_{\mathbf{j} \in \mathbb{N}_{-1}^{s}} 2^{2|\mathbf{j}|(1-1 / \bar{p})}\left(\sum_{\mathbf{m} \in \mathbb{D}_{\mathbf{j}}}\left|\left\langle f, h_{\mathbf{j}, \mathbf{m}}\right\rangle\right|^{\bar{p}}\right)^{2 / \bar{p}} .
$$

Likewise: quasi-norm of the discrepancy function in Besov spaces and Triebel-Lizorkin spaces with dominating mixed smoothness:

- Triebel (2010)
- Hinrichs (2010)
- Markhasin $(2013,2015)$
- Kritzinger $(2016,2018)$
- DHMP (2017) - Matching lower and upper bounds for order 2 DS

Intermediate norms

Gap of knowledge between L_{p} discrepancy for finite vs. infinite p :

- $p<\infty$:

$$
\min L_{p, N} \asymp \frac{(\log N)^{\frac{s}{2}}}{N}
$$

- $p=\infty$:

$$
\frac{(\log N)^{\frac{s}{2}+\eta_{s}}}{N} \lesssim \min D_{N}^{*} \lesssim \frac{(\log N)^{s}}{N}
$$

What happens in intermediate spaces between L_{p} for $p<\infty$ and L_{∞} "close" to L_{∞} ?

Intermediate norms

Examples:

- exponential Orlicz norm: for any $\beta>0$

$$
\|f\|_{\exp \left(L^{\beta}\right)} \asymp_{s} \sup _{p>1} p^{-\frac{1}{\beta}}\|f\|_{L_{p}\left([0,1]^{s}\right)} .
$$

- BMO (seminorm)

$$
\|f\|_{\mathrm{BMO}^{s}}^{2}=\sup _{U \subseteq[0,1)^{s}} \frac{1}{\lambda_{s}(U)} \sum_{\mathbf{j} \in \mathbb{N}_{0}^{s}} 2^{|j|} \sum_{\substack{\mathbf{m} \in \mathbb{D}_{\mathbf{j}} \subseteq U \\ \operatorname{supp}\left(\mathrm{~h}_{\mathbf{j}}\right) \subseteq U}}\left|\left\langle f, h_{\mathbf{j}, \mathbf{m}}\right\rangle\right|^{2} .
$$

BMO-discrepancy of \mathcal{S}

$$
L_{\mathrm{BMO}, \mathrm{~N}}(\mathcal{S}):=\left\|\Delta_{\mathcal{S}_{N}}\right\|_{\mathrm{BMO}}
$$

Results for finite point sets

- Bilyk, Lacey, Parissis, Vagharshakyan (2009)
- Bilyk \& Markhasin (2016)

BMO-discrepancy

Theorem (DHMP 2017)

For every \mathcal{S} in $[0,1)^{s}$ we have

$$
L_{\mathrm{BMO}, N}(\mathcal{S}) \geq c_{s} \frac{(\log N)^{\frac{s}{2}}}{N} \quad \text { infinitely often. }
$$

Theorem (DHMP 2017)

Let \mathcal{S} be an order 2 digital (t, s)-sequence over $\mathbb{F}_{2}+$ additional property.
Then we have

$$
L_{\mathrm{BMO}, N}(\mathcal{S}) \lesssim_{s} \frac{(\log N)^{\frac{s}{2}}}{N} \quad \text { for all } N \geq 2
$$

Discussion of the asymptotic bounds

Discrepancy/QMC can achieve error bounds of order of magnitude

$$
D_{N}^{*} \lesssim \frac{(\log N)^{s}}{N}
$$

Problem: $N \mapsto(\log N)^{s} / N$ is increasing for $N \leq \mathrm{e}^{s}$

E.g. $s=200$, then $\mathrm{e}^{s} \approx 7.2 \times 10^{86}$.

Viewpoint of "Information Based Complexity"

Study the dependence of the worst-case error on the dimension s

Theorem (Heinrich, Novak, Wasilkowski, Woźniakowski 2001)
For all $N, s \in \mathbb{N}$ there exist \mathcal{S}_{N} in $[0,1)^{s}$ such that

$$
D_{N}^{*}\left(\mathcal{S}_{N}\right) \lesssim \text { abs } \sqrt{\frac{s}{N}}
$$

- $N^{*}(\varepsilon, s)=\min \left\{N: \exists \mathcal{S}_{N} \subseteq[0,1)^{s}\right.$ s.t. $\left.D_{N}^{*}\left(\mathcal{S}_{N}\right) \leq \varepsilon\right\} \lesssim s \varepsilon^{-2}$.
- IBC: polynomial tractability
- Hinrichs: $N^{*}(\varepsilon, s) \geq c s \varepsilon^{-1}$ for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$ and $s \in \mathbb{N}$
- exact dependence of $N^{*}(\varepsilon, s)$ on ε^{-1} still open
- Aistleitner: $D_{N}^{*}\left(\mathcal{S}_{N}\right) \leq 10 \sqrt{s / N}$.

A metrical result

Definition

For $\mathbf{f} \in \mathbb{F}_{b}\left(\left(t^{-1}\right)\right)^{s}$ consider $\mathcal{S}(\mathbf{f})=\left(\mathbf{y}_{n}\right)_{n \geq 0}$ where

$$
\mathbf{y}_{n}=\left\{t^{n} \mathbf{f}\right\}_{\mid t=b}=\left(\left\{t^{n} f_{1}\right\}_{\mid t=b}, \ldots,\left\{t^{n} f_{s}\right\}_{\mid t=b}\right)
$$

Theorem (Neumüller \& Pill. 2016)
Let $s \geq 2$. For every $\delta \in(0,1)$ we have

$$
D_{N}^{*}(\mathcal{S}(\mathbf{f})) \lesssim_{b, \delta} \sqrt{\frac{s \log s}{N}} \log N \quad \text { for all } N \geq 2
$$

with probability at least $1-\delta$, where the implied constant $C_{b, \delta} \asymp_{b} \log \delta^{-1}$.
Classical Kronecker sequences: Löbbe (2014)

Weighted star discrepancy

Let $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots \in \mathbb{R}^{+}$and put

$$
\gamma_{\mathfrak{u}}=\prod_{j \in \mathfrak{u}} \gamma_{j} \text { for } \quad \emptyset \neq \mathfrak{u} \subseteq[s] .
$$

Weighted star discrepancy (Sloan \& Woźniakowski 1998)

$$
D_{N, \gamma}^{*}(\mathcal{S})=\max _{\emptyset \neq \mathfrak{u} \subseteq[s]} \gamma_{\mathfrak{u}} D_{N}^{*}(\mathcal{S}(\mathfrak{u}))
$$

If $\gamma_{j}=1$ for all $j \geq 1$, then

$$
D_{N, \gamma}^{*}(\mathcal{S})=D_{N}^{*}(\mathcal{S})
$$

Weighted star discrepancy and multivariate integration
Consider

$$
\mathcal{F}_{s, 1, \gamma}=\left\{f:[0,1]^{s} \rightarrow \mathbb{R}:\|f\|_{s, 1, \gamma}<\infty\right\}
$$

where

$$
\|f\|_{s, 1, \gamma}=|f(\mathbf{1})|+\sum_{\emptyset \neq \mathfrak{u} \subseteq[s]} \frac{1}{\gamma_{\mathfrak{u}}}\left\|\frac{\partial^{|\mathfrak{u}|}}{\partial \mathbf{x}_{\mathfrak{u}}} f\left(\mathbf{x}_{\mathfrak{u}}, \mathbf{1}\right)\right\|_{L_{1}} .
$$

- small $\gamma_{\mathfrak{u}}$ forces $\left\|\frac{\partial^{|\mathfrak{u}|}}{\partial \mathbf{x}_{\mathfrak{u}}} f\left(\mathbf{x}_{\mathfrak{u}}, \mathbf{1}\right)\right\|_{L_{1}}$ to be small in order to guarantee $\|f\|_{\mathcal{F}_{s, 1, \gamma}} \leq 1$

Theorem (Sloan \& Woźniakowski 1998)

$$
\operatorname{wce}\left(\mathcal{F}_{s, 1, \gamma}, \mathcal{S}_{N}\right)=D_{N, \gamma}^{*}\left(\mathcal{S}_{N}\right)
$$

Weighted star discrepancy and tractability

Let

$$
N_{\min }(\varepsilon, s):=\min \left\{N: \exists \mathcal{S}_{N} \subseteq[0,1)^{s} \text { s.t. } D_{N, \gamma}^{*}\left(\mathcal{S}_{N}\right) \leq \varepsilon\right\}
$$

The weighted star discrepancy is said to be

- strongly polynomially tractable, if there exist non-negative real numbers C and β such that

$$
\begin{equation*}
N_{\min }(\varepsilon, s) \leq C \varepsilon^{-\beta} \quad \text { for all } s \in \mathbb{N} \text { and for all } \varepsilon \in(0,1) \tag{1}
\end{equation*}
$$

The infimum β^{*} over all $\beta>0$ such that (1) holds is called the ε-exponent of strong polynomial tractability.

Weighted star discrepancy and tractability

Theorem (Hinrichs, Pill., Tezuka 2018)
The weighted star discrepancy of Niederreiter sequences achieves SPT with

- $\beta^{*}=1$, which is optimal, if

$$
\sum_{j \geq 1} j \gamma_{j}<\infty \quad \text { e.g. } \gamma_{j}=\frac{1}{j^{2+\delta}}
$$

- $\beta^{*} \leq 2$, if

$$
\sup _{s \geq 1} \max _{\emptyset \neq \mathfrak{u} \subseteq[s]} \prod_{j \in \mathfrak{u}}\left(j \gamma_{j}\right)<\infty \quad \text { e.g. } \gamma_{j}=\frac{1}{j}
$$

Weighted star discrepancy and tractability

Aistleitner (2014): If

$$
\sum_{j=1}^{\infty} \exp \left(-c \gamma_{j}^{-2}\right)<\infty \quad \text { e.g. } \gamma_{j}=\frac{1}{\sqrt{\log j}}
$$

for some $c>0$ then for all $s, N \in \mathbb{N}$ there exists a \mathcal{S}_{N} in $[0,1)^{s}$:

$$
D_{N, \gamma}^{*}\left(\mathcal{S}_{N}\right) \lesssim \gamma \frac{1}{\sqrt{N}} \quad \text { i.e., SPT with } \beta^{*} \leq 2
$$

Open problem: construct \mathcal{S}_{N}

Summary

- Digital sequences: excellent discrepancy properties in an asymptotic sense:
- $p \in[1, \infty)$:

$$
L_{p}(\mathcal{S}) \lesssim \frac{(\log N)^{s / 2}}{N} \quad \text { (best possible) }
$$

- $p=\infty$:

$$
D_{N}^{*}(\mathcal{S}) \lesssim \frac{(\log N)^{s}}{N} \quad(\text { presumably best possible })
$$

- best possible discrepancy bounds for many other norms of $\Delta_{\mathcal{S}}$
- Good properties also with respect to tractability of discrepancy, but here ...
many open questions

[^0]: ${ }^{1}$ Supported by the Austrian Science Fund (FWF), Project F5509-N26.

