Numerical analysis of a particle calibration procedure for local and stochastic volatility models

Alexandre Zhou
Joint work with Benjamin Jourdain

CERMICS, Ecole des Ponts ParisTech

MCQMC, 4th July 2018
Plan

1. Motivation
2. Weak error estimates
3. An interacting particle system
Processes matching marginal distributions

- Stochastic processes matching given marginals is a question arising in mathematical finance

- Assume that the market gives us the prices of European put options \(P(T, K) \) for all \(T, K \geq 0 \), on the underlying asset \(S \)

- Given a model on \(S \), the price of a put option is given by

\[
\mathbb{E}[e^{-rT}(K - S_T)_+]
\]

- For hedging purposes, we want a model \((S_t)_{t \geq 0} \) calibrated to those prices:

\[
\forall T, K \geq 0, \ P(T, K) = \mathbb{E} \left[e^{-rT} (K - S_T)_+ \right]
\]

- By Breeden and Litzenberger (1978), marginal laws are equivalent to market prices of European Puts \(P(T, K) \)
From LV to LSV

• Dupire calibrated Local Volatility model (1992) achieves exact calibration:
 \[dS_t^D = rS_t^D dt + \sigma_{Dup}(t, S_t^D) S_t^D dW_t \]

• **Motivation**: richer dynamics but still satisfying marginal constraints

• Lipton (2002) and Piterbarg (2006): Local and Stochastic Volatility (LSV) model
 \[dS_t = rS_t dt + f(Y_t) \sigma(t, S_t) S_t dW_t \]

• Stochastic volatility factor \(f \) fixed, choice of calibration function \(\sigma \) ?
Gyongy's Theorem

Let X be an Ito process satisfying

$$dX_t = \alpha(t, \omega) \, dt + \beta(t, \omega) \, dW_t$$

where α, β are adapted processes. Under mild assumptions, there exists a Markov process X^D_t satisfying

$$dX^D_t = a(t, X^D_t) \, dt + b(t, X^D_t) \, dW_t$$

where X_t, X^D_t have the same distribution for all $t \geq 0$ and X^D can be constructed with

$$a(t, y) = \mathbb{E}[\alpha(t, \omega) | X_t = y]$$

$$b^2(t, y) = \mathbb{E}[\beta^2(t, \omega) | X_t = y]$$
Calibration of LSV Models

- The LSV model is calibrated to \((P(T, K))_{T,K \geq 0} \) if

\[
\mathbb{E} \left[(f(Y_t)\sigma(t, S_t)S_t)^2 | S_t = x \right] = (\sigma_{Dup}(t, x)x)^2
\]

\[
\sigma(t, x) = \frac{\sigma_{Dup}(t, x)}{\sqrt{\mathbb{E} \left[f^2(Y_t) | S_t = x \right]}}
\]

- The obtained SDE

\[
dS_t = rS_t dt + \frac{f(Y_t)}{\sqrt{\mathbb{E} \left[f^2(Y_t) | S_t \right]}} \sigma_{Dup}(t, S_t)S_t dW_t.
\]

is nonlinear in the sense of McKean and its solution should have the same one dimensional marginals as

\[
dS_t^D = rS_t^D dt + \sigma_{Dup}(t, S_t^D)S_t^D dW_t
\]

- **Questions**: existence and uniqueness? simulation?
Existence and uniqueness?

- Abergel, Tachet, 2010: local in time existence, perturbation of the Dupire model
- Jourdain, Z., 2017: global existence when Y is a jump process with a finite number of states
- Existence and uniqueness to the SDE in the general setting remain open problems...
Simulation of the SDE

- Ren, Madan, Qian 2007: solve the associated Fokker-Planck PDE
- Guyon, Henry-Labordère 2008: kernel approximation of the conditional expectation and interacting particle system:

\[X = \log(S), \tau_t = \left\lfloor \frac{nt}{T} \right\rfloor \frac{T}{n}, \text{ for } 1 \leq i \leq N, \]

\[
E_i \left[f^2(Y_{\tau_t}^{n,i,N}) | X_{\tau_t}^{n,i,N} \right] = \frac{1}{N} \sum_{j=1}^{N} f^2(Y_{\tau_t}^{n,j,N}) K_{\epsilon} (X_{\tau_t}^{n,j,N} - X_{\tau_t}^{n,i,N}),
\]

\[
dX_{t}^{n,i,N} = \left(r - \frac{1}{2} E_i \left[f^2(Y_{\tau_t}^{n,i,N}) | X_{\tau_t}^{n,i,N} \right] \sigma_{Dup}(\tau_t, X_{\tau_t}^{n,i,N}) \right) dt
\]

\[
+ \frac{f(Y_{\tau_t}^{n,i,N})}{\sqrt{E_i \left[f^2(Y_{\tau_t}^{n,i,N}) | X_{\tau_t}^{n,i,N} \right]}} \sigma_{Dup}(\tau_t, X_{\tau_t}^{n,i,N}) dW_t
\]
Time discretization

The particle system is an efficient calibration procedure in the industry

Convergence and speed of calibration \(\frac{1}{N} \sum_{i=1}^{N} \varphi(X^{n,i,N}_T) \to E[\varphi(X^D_T)] \) ?

Step 1: Existence for calibrated LSV models seems challenging in the general case, but it is not a problem for its discretization in time. **General Framework:**
(multidimensional setting)

\[
\begin{align*}
\text{d}X^n_t &= b_X(t, X^n_{tt}, Y^n_{tt}, E[\phi(X^n_{tt}, Y^n_{tt})|X^n_{tt}]) \text{ d}t + \sigma_X(t, X^n_{tt}, Y^n_{tt}, E[\phi(X^n_{tt}, Y^n_{tt})|X^n_{tt}]) \text{ d}W^1_t, \\
\text{d}Y^n_t &= b_Y(t, X^n_{tt}, Y^n_{tt}) \text{ d}t + \sigma_Y(t, X^n_{tt}, Y^n_{tt}) \text{ d}W^2_t, \\
\text{d}X^D_t &= b(t, X^D_t) \text{ d}t + \sigma(t, X^D_t) \text{ d}W^1_t,
\end{align*}
\]

with the structure condition

\[
\begin{align*}
E[b_X(t, X^n_{tt}, Y^n_{tt}, E[\phi(X^n_{tt}, Y^n_{tt})|X^n_{tt}])|X^n_{tt}] &= b(t, X^n_{tt}) := \left(r - \frac{1}{2} \sigma_{Dup}^2(t, X^n_{tt}) \right) \\
E[\sigma_X^2(t, X^n_{tt}, Y^n_{tt}, E[\phi(X^n_{tt}, Y^n_{tt})|X^n_{tt}])|X^n_{tt}] &= \sigma^2(t, X^n_{tt}) := \sigma_{Dup}^2(t, X^n_{tt})
\end{align*}
\]
Weak Error estimates, regular case

- Multidimensional setting
- $b, \sigma \in C^{1,4}$ and bounded derivatives of positive order
- $\varphi \in C^4_P$
- $\phi, \sigma_X, \sigma_Y, b_X, b_Y$ sublinear w.r.t. their arguments
- X_0 and Y_0 have finite moments for all orders

Theorem (Regular case)

Under the above regularity conditions, there exists $C > 0$ such that

$$\forall n \geq 1, |\mathbb{E}[\varphi(X^n_T) - \varphi(X^D_T)]| \leq \frac{C}{n}.$$
Motivation

Weak error estimates

An interacting particle system

Sketch of proof 1/2

• All dimensions equal to 1
• \(b = 0, b_X = 0, \sigma = 1, \sigma_X \) bounded and \(\varphi \) smooth
• To study the weak error:
 \[
 \| \mathbb{E}[\varphi(X^n_T) - \varphi(X^D_T)] \|,
 \]

 let \(u(t, x) = \mathbb{E}[\varphi(X^D_T) | X^D_t = x] \). The function \(u \) is smooth and satisfies:
• \(\partial_t u + \frac{1}{2} \partial^2_{xx} u = 0, \ u(T, \cdot) = \varphi \) (heat equation)
• \(\mathbb{E}[\varphi(X^D_T)] = \mathbb{E}[u(T, X^D_T)] = \mathbb{E}[u(0, X^D_0)] \)

• Talay Tubaro technique:

 \[
 \mathbb{E}[\varphi(X^n_T) - \varphi(X^D_T)] = \sum_{k=0}^{n-1} \mathbb{E}[u(t_{k+1}, X^n_{t_{k+1}}) - u(t_k, X^n_{t_k})] = \sum_{k=0}^{n-1} E_k
 \]
Sketch of proof 2/2

- Notation \(\sigma_X \left(t_k, X_{t_k}^n, Y_{t_k}^n, \mathbb{E} \left[\phi(X_{t_k}^n, Y_{t_k}^n) | X_{t_k}^n \right] \right) = \sigma_{X,k} \) (sim. for \(b_{X,k} \)) and recall the struct. cond.

\[
\forall 0 \leq k \leq n - 1, \mathbb{E}[\sigma_{X,k}^2 | X_{t_k}^n] = \sigma^2(t_k, X_{t_k}^n)
\]

- To study \(E_k \), we apply the Ito formula between \(t_k \) and \(t_k+1 \):

\[
u(t_{k+1}, X_{t_{k+1}}^n) - \nu(t_k, X_{t_k}^n) = \int_{t_k}^{t_{k+1}} \partial_x \nu(t, X_{t}^n) \sigma_{X,k} dW_t
\]

\[
+ \int_{t_k}^{t_{k+1}} \frac{1}{2} \left(\sigma_{X,k}^2 - \sigma^2(t_k, X_{t_k}^n) \right) \partial_x^2 \nu(t, X_{t}^n) dt
\]

\[
+ \int_{t_k}^{t_{k+1}} \frac{1}{2} \left(\sigma_{X}^2(t_k, X_{t_k}^n) - \sigma^2(t, X_{t}^n) \right) \partial_x^2 \nu(t, X_{t}^n) dt
\]

- Taylor expansion at order 2 to eliminate the lowest order:

\[
\partial_x^2 \nu(t, X_{t}^n) = \partial_x^2 \nu(t, X_{t_k}^n) + (X_{t}^n - X_{t_k}^n) \partial_x^3 \nu(t, X_{t_k}^n) + (X_{t}^n - X_{t_k}^n)^2 \mathcal{R}_k
\]

- Take the expectation and estimate the remaining terms

- We finally obtain that \(E_k \leq \frac{C}{n^2} \), so

\[
|\mathbb{E}[\phi(X_{T}^n) - \phi(X_{D}^T)]| \leq \frac{C}{n}
\]
Weak Error estimates, case of the put

- Unidimensional setting
- \(b, \sigma \in C^{1,\delta} \) and have bounded derivatives
- \(\phi, \sigma_Y, b_Y \) sublinear and \(b_X, \sigma_X \) bounded
- \(X_0 \) and \(Y_0 \) have finite moments for all orders

Theorem (Case of the Put)

Under the above regularity conditions, for any \(K > 0 \), there exists \(C > 0 \) such that

\[
\forall n \geq 2, \left| \mathbb{E}[(K - e^{X^n_T})_+ - (K - e^{X^D_T})_+] \right| \leq C \frac{\log(n)}{n}.
\]

Same ideas of proof, estimates of the remainder terms are a bit different (gaussian estimates for the spatial derivatives of \(u \), Aronson estimates for the density of \(X^n_t \))
Half-step scheme

- Half step scheme, under uniform ellipticity $\sigma_X \geq \sigma > 0$

 \[
 \hat{X}_{t_{k+1/2}}^n = \hat{X}_{t_k}^n + \hat{b}_X, k\Delta + \sqrt{\hat{\sigma}_{X,k}^2 - \sigma^2} \sqrt{\Delta Z_k^1}
 \]

 \[
 \hat{X}_{t_{k+1}}^n = \hat{X}_{t_{k+1/2}}^n + \sigma \sqrt{\Delta Z_{k+1/2}^1}
 \]

 \[
 \hat{Y}_{t_{k+1}}^n = \hat{Y}_{t_k}^n + \hat{b}_Y, k\Delta + \hat{\sigma}_Y, k \sqrt{\Delta Z_k^2}
 \]

- For $\rho > 0, x \in \mathbb{R}, G_\rho(x) = \frac{1}{\sqrt{2\pi \rho}} e^{-\frac{x^2}{2\rho}}$

Proposition

For $k \geq 1$, $\hat{X}_{t_k}^n$ has the density $p^n_X(t_k, x) = \mathbb{E} \left[G_{\sigma^2 \Delta} \left(x - \hat{X}_{t_k - \frac{1}{2}}^n \right) \right]$. Moreover, let

\[
\left(\tilde{X}_{t_k - \frac{1}{2}}^n, \tilde{Y}_{t_k}^n \right)
\]

be a copy of $\left(\hat{X}_{t_k - \frac{1}{2}}^n, \hat{Y}_{t_k}^n \right)$ independent of $\hat{X}_{t_k}^n$. The following representation holds:

\[
\mathbb{E} \left[\phi \left(\hat{X}_{t_k}^n, \tilde{Y}_{t_k}^n \right) \mid \hat{X}_{t_k}^n \right] = \frac{\mathbb{E} \left[\phi \left(\hat{X}_{t_k}^n, \hat{Y}_{t_k}^n \right) G_{\sigma^2 \Delta} \left(\hat{X}_{t_k}^n - \tilde{X}_{t_k - \frac{1}{2}}^n \right) \mid \hat{X}_{t_k}^n \right]}{\mathbb{E} \left[G_{\sigma^2 \Delta} \left(\hat{X}_{t_k - \frac{1}{2}}^n - \tilde{X}_{t_k - \frac{1}{2}}^n \right) \mid \hat{X}_{t_k}^n \right]}
\]
Motivation

Weak error estimates

An interacting particle system

A particle system

For the particle system: replace the real law by the empirical law in the previous representation

\[
\begin{align*}
X_{t_{k+1/2}}^{n,i,N} &= X_{t_k}^{n,i,N} + b_{X,k}^{n,i,N} \Delta + \sqrt{(\sigma_{X,k}^{n,i,N})^2 - \sigma^2 \Delta Z_k^1}, \\
X_{t_{k+1}}^{n,i,N} &= X_{t_{k+1/2}}^{n,i,N} + \sigma \sqrt{\Delta Z_{k+1/2}^1}, \\
Y_{t_{k+1}}^{n,i,N} &= Y_{t_k}^{n,i,N} + b_Y(t_k, X_{t_k}^{n,i,N}, Y_{t_k}^{n,i,N}) \Delta + \sigma_Y(t_k, X_{t_k}^{n,i,N}, Y_{t_k}^{n,i,N}) \sqrt{\Delta Z_k^2}, \\
b_{X,k}^{n,i,N} &= b_X(t_k, X_{t_k}^{n,i,N}, Y_{t_k}^{n,i,N}, E_k^N(X_{t_k}^{n,i,N})) \\
\sigma_{X,k}^{n,i,N} &= \sigma_X(t_k, X_{t_k}^{n,i,N}, Y_{t_k}^{n,i,N}, E_k^N(X_{t_k}^{n,i,N})) \\
E_k^N(X_{t_k}^{n,i,N}) &= \frac{\sum_{j=1}^N \phi(X_{t_k}^{n,i,N}, Y_{t_k}^{n,j,N}) G_{\sigma^2 \Delta}(X_{t_k}^{n,i,N} - X_{t_k-\frac{1}{2}}^{n,j,N})}{\sum_{j=1}^N G_{\sigma^2 \Delta}(X_{t_k}^{n,i,N} - X_{t_k-\frac{1}{2}}^{n,j,N})}
\end{align*}
\]
Numerical illustration

- LSV Model with Black Scholes setting $\sigma = 1$, $r = 0$, $b = -\frac{1}{2}$, $f(y) = 1 + 1 \vee y^2$, $T = 1$, $Y_t = t + W_t$, atm put case $K = 1$, $X_0 = 0$

- Verification of time discretization weak error on the Kernel Approximation algorithm ($\epsilon = 0.1$, $N = 6000$)

<table>
<thead>
<tr>
<th>n</th>
<th>WE ($\times 10^{-4}$)</th>
<th>Product $\frac{n}{\log(n)}$ WE ($\times 10^{-4}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>22.32</td>
<td>159.66</td>
</tr>
<tr>
<td>10</td>
<td>12.07</td>
<td>120.7</td>
</tr>
<tr>
<td>50</td>
<td>2.61</td>
<td>76.81</td>
</tr>
<tr>
<td>100</td>
<td>1.43</td>
<td>71.5</td>
</tr>
</tbody>
</table>
Numerical illustration

- $n = 5$ comparison of $MSE = \mathbb{E} \left[\left(\frac{1}{N} \sum_{i=1}^{N} \varphi(X_{T}^{n,i,N}) - \mathbb{E}[\varphi(X_{T}^{D})] \right)^2 \right]$ for the put $(K = 1, \text{atm})$ between optimized Kernel Approximation and Half Step scheme with maximal $\sigma = 0.25$ (no optimization)

- In the half-step scheme, the window of regularization is $\epsilon \sim \sqrt{\Delta}$, and as we expect $MSE \sim \Delta^2$, it would be consistent with the classical optimal NW rate $\epsilon_{opt}(N) \sim N^{-1/5}$

- Estimated exponent of MSE as function of particles $MSE \sim N^{-0.84}$

- Very roughly $\epsilon_{opt}(N) \sim N^{-0.24}$ but needs to be confirmed
Partial results on the convergence of the particle system to the calibrated one dimensional marginals:

- Convergence of the time discretized process at order 1 towards the calibrated marginal
- Half-step scheme taking advantage of a representation of the conditional expectation
- Relevant in our test case, to be confirmed with more simulations...
Thank you for your attention!