

Sampling of probability measures in the convex order and approximation of Martingale Optimal Transport problems

Sampling in the convex order

Benjamin Jourdain

CERMICS, Ecole des Ponts, University Paris-Est Joint work with Aurélien Alfonsi and Jacopo Corbetta

MCQMC 2018

5 july 2018

Sampling in the convex order

Structure of the talk

- 2 The dimension d = 1
- Sampling in the convex order in higher dimensions

The convex order

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d) = \{ \text{probability measures on } \mathbb{R}^d \}$. We say that μ is smaller than ν for the convex order and we write $\mu \leq_{cx} \nu$ if

$$orall \phi: \mathbb{R}^d o \mathbb{R} ext{ convex }, \ \int_{\mathbb{R}^d} \phi(x) \mu(dx) \leq \int_{\mathbb{R}^d} \phi(y)
u(dy),$$

when the integrals are defined. For $\phi(x) = \pm x$, we obtain that

$$\int_{\mathbb{R}^d} |y| \nu(dy) < \infty \text{ and } \mu \leq_{\mathsf{cx}} \nu \Rightarrow \int_{\mathbb{R}^d} x \mu(dx) = \int_{\mathbb{R}^d} y \nu(dy).$$

Strassen's theorem : (1965) Assume $\int_{\mathbb{R}^d} |y|\nu(dy) < \infty$. $\mu \leq_{cx} \nu$ iff \exists a martingale Markov kernel R(x, dy) ($\forall x \in \mathbb{R}^d$, $\int_{\mathbb{R}^d} yR(x, dy) = x$) such that $\int \mu(dx)R(x, dy) = \nu(dy)$ i.e. $\mu R = \nu$.

 Introduction
 Sampling in the convex order

 The dimension d = 1
 L

 Sampling in the convex order in higher dimensions
 L

The convex order

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d) = \{ \text{probability measures on } \mathbb{R}^d \}$. We say that μ is smaller than ν for the convex order and we write $\mu \leq_{cx} \nu$ if

$$orall \phi: \mathbb{R}^d o \mathbb{R} ext{ convex }, \ \int_{\mathbb{R}^d} \phi(x) \mu(dx) \leq \int_{\mathbb{R}^d} \phi(y)
u(dy),$$

when the integrals are defined. For $\phi(x) = \pm x$, we obtain that

$$\int_{\mathbb{R}^d} |y| \nu(dy) < \infty \text{ and } \mu \leq_{\mathsf{cx}} \nu \Rightarrow \int_{\mathbb{R}^d} x \mu(dx) = \int_{\mathbb{R}^d} y \nu(dy).$$

Strassen's theorem : (1965) Assume $\int_{\mathbb{R}^d} |y|\nu(dy) < \infty$. $\mu \leq_{cx} \nu$ iff \exists a martingale Markov kernel R(x, dy) ($\forall x \in \mathbb{R}^d$, $\int_{\mathbb{R}^d} yR(x, dy) = x$) such that $\int \mu(dx)R(x, dy) = \nu(dy)$ i.e. $\mu R = \nu$.

Sampling in the convex order

- Introduction

The dimension d = 1Sampling in the convex order in higher dimensions Numerical results

Martingale Optimal Transport in Finance

We assume r = 0. $(S_t)_{t \ge 0}$: price process of d assets. Suppose that we know for $0 < T_1 < T_2$ the law of S_{T_1} and S_{T_2} (denoted by μ and ν), and that we want to price an option that pays $c(S_{T_1}, S_{T_2})$ at time T_2 , with $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$.

Price bounds for the option :

$$\left[\inf_{R \text{ mart}:\mu R = \nu} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x, y) \mu(dx) R(x, dy), \sup_{R} \int_{\mathbb{R}^d \times \mathbb{R}^d} c \mu R\right].$$

Multi-marginal case : payoff $c(S_{T_1}, \ldots, S_{T_n})$ with $c : (\mathbb{R}^d)^n \to \mathbb{R}$. Beiglböck, Henry-Labordère, Penkner (2013) : Duality and connection with super/subhedging strategies. Many theoretical contributions since.

Sampling in the convex order

The dimension d = 1Sampling in the convex order in higher dimensions Numerical results

Sampling in the Convex order : motivation

When $\mu \leq_{cx} \nu$ are approximated by probability measures $\mu_I = \sum_{i=1}^{I} p_i \delta_{x_i}$ and $\nu_J = \sum_{j=1}^{J} q_j \delta_{y_j}$ with finite supports such that $\mu_I \leq_{cx} \nu_J$, then one can approximate $MOT(\mu, \nu, c)$ by $MOT(\mu_I, \nu_J, c)$ a finite dimensional linear programming problem for which there exist efficient solvers (simplex, interior points,...) :

 $\begin{cases} \text{mini/maximisation of } \sum_{i=1}^{I} \sum_{j=1}^{J} p_i r_{ij} c(x_i, y_j) \text{ under constraints} \\ r_{ij} \ge 0, \ \sum_{i=1}^{I} p_i r_{ij} = q_j, \ \sum_{j=1}^{J} r_{ij} = 1 \text{ et } \sum_{j=1}^{J} r_{ij}(x_i - y_j) = 0 \end{cases}$

<u>Monte-Carlo</u>: if $(X_i)_{i\geq 1}$ i.i.d. $\sim \mu$ and $(Y_j)_{j\geq 1}$ i.i.d. $\sim \nu$, in general $\mu_I = \frac{1}{T} \sum_{i=1}^{I} \delta_{X_i}$ is not smaller than $\nu_J = \frac{1}{J} \sum_{j=1}^{J} \delta_{Y_j}$ in the cvx order. In general, $\frac{1}{T} \sum_{i=1}^{I} X_i \neq \frac{1}{J} \sum_{j=1}^{J} Y_j$.

Sampling in the convex order

The dimension d = 1Sampling in the convex order in higher dimensions Numerical results

Sampling in the Convex order : motivation

When $\mu \leq_{cx} \nu$ are approximated by probability measures $\mu_I = \sum_{i=1}^{I} p_i \delta_{x_i}$ and $\nu_J = \sum_{j=1}^{J} q_j \delta_{y_j}$ with finite supports such that $\mu_I \leq_{cx} \nu_J$, then one can approximate $MOT(\mu, \nu, c)$ by $MOT(\mu_I, \nu_J, c)$ a finite dimensional linear programming problem for which there exist efficient solvers (simplex, interior points,...) :

 $\begin{cases} \min(\text{maximisation of } \sum_{i=1}^{I} \sum_{j=1}^{J} p_i r_{ij} c(x_i, y_j) \text{ under constraints} \\ r_{ij} \ge 0, \ \sum_{i=1}^{I} p_i r_{ij} = q_j, \ \sum_{j=1}^{J} r_{ij} = 1 \text{ et } \sum_{j=1}^{J} r_{ij} (x_i - y_j) = 0 \end{cases}$

<u>Monte-Carlo</u>: if $(X_i)_{i\geq 1}$ i.i.d. $\sim \mu$ and $(Y_j)_{j\geq 1}$ i.i.d. $\sim \nu$, in general $\mu_I = \frac{1}{I} \sum_{i=1}^{I} \delta_{X_i}$ is not smaller than $\nu_J = \frac{1}{J} \sum_{j=1}^{J} \delta_{Y_j}$ in the cvx order. In general, $\frac{1}{I} \sum_{i=1}^{I} X_i \neq \frac{1}{J} \sum_{j=1}^{J} Y_j$.

Sampling in the convex order

Introduction

 $\label{eq:constraint} \begin{array}{l} \mbox{The dimension d} = 1\\ \mbox{Sampling in the convex order in higher dimensions}\\ \mbox{Numerical results} \end{array}$

Approximation techniques preserving the convex order **Dimension** d = 1: For $\eta \in \mathcal{P}(\mathbb{R})$, we denote $F_{\eta}(x) = \eta(] - \infty, x]$) and $F_{\eta}^{-1}(u) = \inf\{x \in \mathbb{R} : F_{\eta}(x) \ge u\}$ the cumulative distribution function and the quantile function of η . If $\mu \leq_{cx} \nu$, then (PhD thesis of David Baker UPMC 2012),

 $\frac{1}{I}\sum_{i=1}^{I}\delta_{I\int_{\frac{i}{i-1}}^{\frac{i}{I}}F_{\mu}^{-1}(u)du} \leq_{\text{ex}} \frac{1}{I}\sum_{i=1}^{I}\delta_{I\int_{\frac{i}{i-1}}^{\frac{i}{I}}F_{\nu}^{-1}(u)du}, \forall I \in \mathbb{N}^{*}.$

Quantization :

- The dual quantization (Pagès Wilbertz 2012) preserves the convex order when d = 1. Whatever d, if ν compactly supported, it gives a probability measure $\hat{\nu}$ with finite support s.t. $\nu \leq_{cx} \hat{\nu}$.
- Stationary primal quantization gives a probability measure μ with finite support s.t. μ ≤_{cx} μ. So μ ≤_{cx} μ ≤_{cx} ν ≤_{cx} ν̂.
- Limitations :
 - ν and therefore μ compactly supported,
 - only 2 marginals if d > 2.

Sampling in the convex order

- Introduction

 $\label{eq:stability} \begin{array}{l} \mbox{The dimension } d = 1 \\ \mbox{Sampling in the convex order in higher dimensions} \\ \mbox{Numerical results} \end{array}$

Approximation techniques preserving the convex order **Dimension** d = 1: For $\eta \in \mathcal{P}(\mathbb{R})$, we denote $F_{\eta}(x) = \eta(] - \infty, x]$) and $F_{\eta}^{-1}(u) = \inf\{x \in \mathbb{R} : F_{\eta}(x) \ge u\}$ the cumulative distribution function and the quantile function of η .

If $\mu \leq_{cx} \nu$, then (PhD thesis of David Baker UPMC 2012),

$$\frac{1}{I}\sum_{i=1}^{I}\delta_{I\int_{\frac{i-1}{T}}^{i}F_{\mu}^{-1}(u)du}\leq_{\mathrm{cx}}\frac{1}{I}\sum_{i=1}^{I}\delta_{I\int_{\frac{i-1}{T}}^{i}F_{\nu}^{-1}(u)du},\ \forall I\in\mathbb{N}^{*}.$$

Quantization :

- The dual quantization (Pagès Wilbertz 2012) preserves the convex order when *d* = 1. Whatever *d*, if *ν* compactly supported, it gives a probability measure *ν̂* with finite support s.t. *ν* ≤_{cx} *ν̂*.
- Stationary primal quantization gives a probability measure μ with finite support s.t. μ ≤_{cx} μ. So μ ≤_{cx} μ ≤_{cx} ν ≤_{cx} ν̂.
- Limitations :
 - ν and therefore μ compactly supported,
 - only 2 marginals if d > 2.

Sampling in the convex order

Introduction

The dimension d = 1Sampling in the convex order in higher dimensions Numerical results

A first idea : equalizing the means

Suppose $\mu \leq_{cx} \nu$, X_1, \ldots, X_l i.i.d. $\sim \mu$ and Y_1, \ldots, Y_J i.i.d. $\sim \nu$. We set $\bar{X}_l = \frac{1}{l} \sum_{i=1}^l X_i$ and $\bar{Y}_J = \frac{1}{J} \sum_{j=1}^J Y_j$, and

$$\tilde{\mu}_{I} = \frac{1}{I} \sum_{i=1}^{I} \delta_{X_{i}+m-\bar{X}_{i}}, \ \tilde{\nu}_{J} = \frac{1}{J} \sum_{j=1}^{J} \delta_{Y_{j}+m-\bar{Y}_{J}},$$

with $m = \int x \mu(dx)$ if it is known explicitly (like in finance) or \bar{X}_l otherwise.

• Under conditions slightly stronger than $\mu \leq_{cx} \nu$, a.s., $\exists M, \forall I, J \geq M, \tilde{\mu}_I \leq_{cx} \tilde{\nu}_J.$

• For
$$\mu = \mathcal{L}(exp(\sigma_{\mu}G - \frac{\sigma_{\mu}^{2}}{2})), \nu = \mathcal{L}(exp(\sigma_{\nu}G - \frac{\sigma_{\nu}^{2}}{2}))$$
 with $G \sim \mathcal{N}_{1}(0, 1), \sigma_{\mu} = 0.24, \sigma_{\nu} = 0.28, \mathbb{P}(\tilde{\mu}_{100} \leq_{cx} \tilde{\nu}_{100}) \approx 0.45.$
 \implies need for a non asymptotic approach.

Sampling in the convex order

L The dimension d = 1

 $\label{eq:constraint} \begin{array}{l} \mbox{The dimension } d = 1 \\ \mbox{Sampling in the convex order in higher dimensions} \\ \mbox{Numerical results} \end{array}$

- 2 The dimension d = 1
- Sampling in the convex order in higher dimensions
- 4 Numerical results

Sampling in the convex order \Box The dimension d = 1

The dimension d = 1Sampling in the convex order in higher dimensions Numerical results

Characterisation of the convex order when d = 1For $\mu \in \mathcal{P}_1(\mathbb{R}) = \{\eta \in \mathcal{P}(\mathbb{R}) : \int_{\mathbb{R}} |x|\eta(dx) < \infty\}$, we consider the potential function

$$orall t \in \mathbb{R}, \; \mathcal{P}_{\mu}(t) = \int_{\mathbb{R}} (t-x)^+ \mu(dx) = \int_{-\infty}^t \mathcal{F}_{\mu}(x) dx$$

Theorem

Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R})$. One has $\mu \leq_{cx} \nu$ iff $\int_{\mathbb{R}} x \mu(dx) = \int_{\mathbb{R}} y \nu(dy)$ and one of the following equivalent conditions hold

(i)
$$\forall t \in \mathbb{R}, P_{\mu}(t) \leq P_{\nu}(t),$$

(ii)
$$\forall q \in [0, 1], \ \int_{q}^{1} F_{\mu}^{-1}(p) dp \leq \int_{q}^{1} F_{\nu}^{-1}(p) dp.$$

- $\mathbb{R}
 i t \mapsto P_{\mu}(t)$ is convex,
- $[0,1] \ni q \mapsto \int_q^1 F_{\mu}^{-1}(p) dp$ is concave,
- (i) \Rightarrow preservation of the convex order by Baker's approximation.

Sampling in the convex order The dimension d = 1

The dimension d = 1Sampling in the convex order in higher dimensionsNumerical results

Infimum and Supremum

According to Kertz et Rösler 1992, 2000, for $\mu, \nu \in \mathcal{P}_1(\mathbb{R})$ s.t. $\int_{\mathbb{R}} x\mu(dx) = \int_{\mathbb{R}} y\nu(dy)$, one can define $\mu \lor \nu$ (smallest probability measure larger than μ and ν for the convex order) and $\mu \land \nu$ by

$$\forall t \in \mathbb{R}, \ \int_{-\infty}^{t} F_{\mu \lor \nu}(t) dt = P_{\mu \lor \nu}(t) = P_{\mu} \lor P_{\nu}(t)$$
$$\forall t \in \mathbb{R}, \ \int_{-\infty}^{t} F_{\mu \land \nu}(t) dt = P_{\mu \land \nu}(t) = \operatorname{Conv}(P_{\mu} \land P_{\nu})(t)$$

Sampling in the convex order \Box The dimension d = 1

Infimum and Supremum

Sampling in the convex order in higher dimensions

The dimension d = 1

Numerical results

According to Kertz et Rösler 1992, 2000, for $\mu, \nu \in \mathcal{P}_1(\mathbb{R})$ s.t. $\int_{\mathbb{R}} x\mu(dx) = \int_{\mathbb{R}} y\nu(dy)$, one can define $\mu \lor \nu$ (smallest probability measure larger than μ and ν for the convex order) and $\mu \land \nu$ by

$$\forall t \in \mathbb{R}, \ \int_{-\infty}^{t} F_{\mu \lor \nu}(t) dt = P_{\mu \lor \nu}(t) = P_{\mu} \lor P_{\nu}(t)$$

$$\forall q \in (0,1), \ \int_{q}^{1} F_{\mu \land \nu}^{-1}(p) dp = \left(\int_{q}^{1} F_{\mu}^{-1}(p) dp \right) \land \left(\int_{q}^{1} F_{\nu}^{-1}(p) dp \right).$$

Sampling in the convex order \Box The dimension d = 1

Infimum and Supremum

According to Kertz et Rösler 1992, 2000, for $\mu, \nu \in \mathcal{P}_1(\mathbb{R})$ s.t. $\int_{\mathbb{R}} x\mu(dx) = \int_{\mathbb{R}} y\nu(dy)$, one can define $\mu \lor \nu$ (smallest probability measure larger than μ and ν for the convex order) and $\mu \land \nu$ by

$$\forall t \in \mathbb{R}, \ \int_{-\infty}^{t} F_{\mu \lor \nu}(t) dt = P_{\mu \lor \nu}(t) = P_{\mu} \lor P_{\nu}(t)$$

$$\forall q \in (0,1), \ \int_{q}^{1} F_{\mu \land \nu}^{-1}(p) dp = \left(\int_{q}^{1} F_{\mu}^{-1}(p) dp \right) \land \left(\int_{q}^{1} F_{\nu}^{-1}(p) dp \right).$$

Explicit computation when μ and ν have finite supports.

In particular for
$$\tilde{\mu}_I = \frac{1}{I} \sum_{i=1}^{I} \delta_{X_i+m-\bar{X}_I}, \ \tilde{\nu}_J = \frac{1}{J} \sum_{j=1}^{J} \delta_{Y_j+m-\bar{Y}_J},$$

computation of $\tilde{\mu}_I \wedge \tilde{\nu}_J$ and $\tilde{\mu}_I \vee \tilde{\nu}_J$ for a cost $\mathcal{O}(I \ln(I) + J \ln(J))$. When $\mu \leq_{cx} \nu$, a.s. $\tilde{\mu}_I \wedge \tilde{\nu}_J \rightarrow \mu$ and $\tilde{\mu}_I \vee \tilde{\nu}_J \rightarrow \nu$ weakly as $I, J \rightarrow \infty$.

Sampling in the convex order

Sampling in the convex order in higher dimensions

1 Introduction

2 The dimension d = 1

Sampling in the convex order in higher dimensions

4 Numerical results

Sampling in the convex order

Sampling in the convex order in higher dimensions

A quadratic minimisation problem

- No nice characterization of the convex order through potential functions,
- According to Müller Scarsini 2006, one cannot define $\mu \lor \nu$ and $\mu \land \nu$ for all $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^d)$ s.t. $\int_{\mathbb{R}^d} x \mu(dx) = \int_{\mathbb{R}^d} y \nu(dy)$.

For X_1, \ldots, X_l i.i.d. $\sim \mu$ and Y_1, \ldots, Y_J i.i.d. $\sim \nu$, quadratic minimisation problem with linear constraints

$$\begin{cases} \text{minimise } \frac{1}{7} \sum_{i=1}^{I} \left| X_i - \sum_{j=1}^{J} r_{ij} Y_j \right|^2 \\ \text{constraints } \forall i, j, \ r_{ij} \ge 0, \forall i, \ \sum_{j=1}^{J} r_{ij} = 1 \text{ and } \forall j, \ \frac{1}{7} \sum_{i=1}^{I} r_{ij} = \frac{1}{J}. \end{cases}$$

- \exists a minimiser r^* , which can be computed by efficient solvers.
- $\frac{1}{T}\sum_{i=1}^{I} \delta_{\sum_{j=1}^{J} r_{ij}^* Y_j}$ does not depend on the minimiser r^* and $\leq_{cx} \nu_J$

$$\frac{1}{I}\sum_{i=1}^{I}\phi\bigg(\sum_{j=1}^{J}r_{ij}Y_{j}\bigg) \stackrel{\textit{Jensen}}{\leq} \frac{1}{I}\sum_{i=1}^{I}\sum_{j=1}^{J}r_{ij}\phi(Y_{j}) = \frac{1}{J}\sum_{j=1}^{J}\phi(Y_{j}).$$

Sampling in the convex order

Sampling in the convex order in higher dimensions

A quadratic minimisation problem

- No nice characterization of the convex order through potential functions,
- According to Müller Scarsini 2006, one cannot define $\mu \lor \nu$ and $\mu \land \nu$ for all $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^d)$ s.t. $\int_{\mathbb{R}^d} x \mu(dx) = \int_{\mathbb{R}^d} y \nu(dy)$.

For X_1, \ldots, X_l i.i.d. ~ μ and Y_1, \ldots, Y_J i.i.d. ~ ν , quadratic minimisation problem with linear constraints

$$\begin{cases} \text{minimise } \frac{1}{I} \sum_{i=1}^{I} \left| X_i - \sum_{j=1}^{J} r_{ij} Y_j \right|^2 \\ \text{constraints } \forall i, j, \ r_{ij} \ge 0, \ \forall i, \ \sum_{j=1}^{J} r_{ij} = 1 \text{ and } \forall j, \ \frac{1}{I} \sum_{i=1}^{I} r_{ij} = \frac{1}{J}. \end{cases}$$

∃ a minimiser r*, which can be computed by efficient solvers.
 ¹/_l Σ^l_{i=1} δ<sub>Σ^j_{l=1} r^{*}_{ij} Y_i does not depend on the minimiser r* and ≤_{cx} ν_J
</sub>

$$\frac{1}{l}\sum_{i=1}^{l}\phi\bigg(\sum_{j=1}^{J}r_{ij}Y_{j}\bigg) \stackrel{\text{Jensen}}{\leq} \frac{1}{l}\sum_{i=1}^{l}\sum_{j=1}^{J}r_{ij}\phi(Y_{j}) = \frac{1}{J}\sum_{j=1}^{J}\phi(Y_{j}).$$

Sampling in the convex order

Sampling in the convex order in higher dimensions

A quadratic minimisation problem

- No nice characterization of the convex order through potential functions,
- According to Müller Scarsini 2006, one cannot define $\mu \lor \nu$ and $\mu \land \nu$ for all $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^d)$ s.t. $\int_{\mathbb{D}^d} x \mu(dx) = \int_{\mathbb{R}^d} y \nu(dy)$.

For X_1, \ldots, X_l i.i.d. ~ μ and Y_1, \ldots, Y_J i.i.d. ~ ν , quadratic minimisation problem with linear constraints

$$\begin{cases} \text{minimise } \frac{1}{I} \sum_{i=1}^{I} \left| X_i - \sum_{j=1}^{J} r_{ij} Y_j \right|^2 \\ \text{constraints } \forall i, j, \ r_{ij} \ge 0, \ \forall i, \ \sum_{j=1}^{J} r_{ij} = 1 \text{ and } \forall j, \ \frac{1}{I} \sum_{i=1}^{I} r_{ij} = \frac{1}{J}. \end{cases}$$

- \exists a minimiser r^* , which can be computed by efficient solvers.
- $\frac{1}{7} \sum_{i=1}^{I} \delta_{\sum_{j=1}^{J} r_{j}^{\star} Y_{j}}$ does not depend on the minimiser r^{\star} and $\leq_{cx} \nu_{J}$

$$\frac{1}{I}\sum_{i=1}^{I}\phi\bigg(\sum_{j=1}^{J}r_{ij}Y_{j}\bigg) \stackrel{\text{Jensen}}{\leq} \frac{1}{I}\sum_{i=1}^{I}\sum_{j=1}^{J}r_{ij}\phi(Y_{j}) = \frac{1}{J}\sum_{j=1}^{J}\phi(Y_{j}).$$

۲

Sampling in the convex order

Generalisation

For a Markov kernel *R* on \mathbb{R}^d , we set $m_R(x) = \int_{\mathbb{R}^d} yR(x, dy)$. For $\rho \ge 1$ and $\mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R}^d)$, we want to minimise

$$\mathcal{J}_{
ho}(R) \coloneqq \int_{\mathbb{R}^d} |x-m_{
m {\it R}}(x)|^{
ho} \mu(dx) ext{ on } R ext{ kernel s.t. } \mu R =
u.$$

Wasserstein distance

$$W^{\rho}_{\rho}(\mu,\eta) = \inf_{\pi < \frac{\mu}{\eta}} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^{\rho} \pi(dx, dy) \stackrel{d=1}{=} \int_0^1 |F^{-1}_{\mu} - F^{-1}_{\eta}|^{\rho}(\rho) d\rho.$$

Theorem

 $\inf_{R:\mu R=\nu} \mathcal{J}_{\rho}(R) = \inf_{\eta \leq_{cx}\nu} W^{\rho}_{\rho}(\mu, \eta) \text{ with the infima attained by } R_{\star}, \eta_{\star}.$ If $\rho > 1$, $m_{R_{\star}}$ is unique μ a.e., $\eta_{\star} = m_{R_{\star}} \# \mu, \ \pi_{\star} = \delta_{m_{R_{\star}}(x)}(dy) \mu(dx).$

 $\mu_{\underline{\mathcal{P}}(\nu)}^{\rho} := \eta_*$ Wasserstein projection of μ on the set $\underline{\mathcal{P}}(\nu)$ of probability measures dominated by ν for the convex order.

Sampling in the convex order

Generalisation

For a Markov kernel *R* on \mathbb{R}^d , we set $m_R(x) = \int_{\mathbb{R}^d} yR(x, dy)$. For $\rho \ge 1$ and $\mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R}^d)$, we want to minimise

$$\mathcal{J}_{
ho}(R) \coloneqq \int_{\mathbb{R}^d} |x-m_{
m {\it R}}(x)|^{
ho} \mu(dx) ext{ on } R ext{ kernel s.t. } \mu R =
u.$$

Wasserstein distance

$$W^{\rho}_{\rho}(\mu,\eta) = \inf_{\pi < \frac{\mu}{\eta}} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^{\rho} \pi(dx, dy) \stackrel{d=1}{=} \int_0^1 |F^{-1}_{\mu} - F^{-1}_{\eta}|^{\rho}(p) dp.$$

Theorem

 $\begin{array}{l} \inf_{R:\mu R=\nu} \mathcal{J}_{\rho}(R) = \inf_{\eta \leq_{\mathrm{cx}}\nu} W^{\rho}_{\rho}(\mu,\eta) \text{ with the infima attained by } R_{\star},\eta_{\star}. \\ \text{If } \rho > 1, \ m_{R_{\star}} \text{ is unique } \mu \text{ a.e.}, \ \eta_{\star} = m_{R_{\star}} \# \mu, \ \pi_{\star} = \delta_{m_{R_{\star}}(x)}(dy) \mu(dx). \end{array}$

 $\mu_{\underline{\mathcal{P}}(\nu)}^{\rho} := \eta_{\star}$ Wasserstein projection of μ on the set $\underline{\mathcal{P}}(\nu)$ of probability measures dominated by ν for the convex order.

Sampling in the convex order Sampling in the convex order in higher dimensions

Projection error

Proposition Let $\rho \ge 1$, $\mu, \nu, \mu_l, \nu_J \in \mathcal{P}_{\rho}(\mathbb{R}^d)$ with $\mu \le_{cx} \nu$. Then $W_{\rho}(\mu_l, (\mu_l)_{\underline{\mathcal{P}}(\nu_J)}^{\rho}) \le W_{\rho}(\mu, \mu_l) + W_{\rho}(\nu, \nu_J),$ $W_{\rho}(\mu, (\mu_l)_{\underline{\mathcal{P}}(\nu_J)}^{\rho}) \le 2W_{\rho}(\mu, \mu_l) + W_{\rho}(\nu, \nu_J).$

Corollary

If $\mu \leq_{cx} \nu \in \mathcal{P}_{\rho}(\mathbb{R}^d)$ and $(X_i)_{i\geq 1}$ i.i.d. $\sim \mu$, $(Y_j)_{j\geq 1}$ i.i.d. $\sim \nu$, $\lim_{I,J\to\infty} W_{\rho}(\mu, (\frac{1}{I}\sum_{i=1}^{I}\delta_{X_i})_{\underline{\mathcal{P}}(\frac{1}{J}\sum_{i=1}^{J}\delta_{Y_i})}) = 0$

- Rate of cv of $W_{\rho}(\mu, \frac{1}{I} \sum_{i=1}^{I} \delta_{X_i})$ as $I \to \infty$: Fournier and Guillin 2015,
- Extension to the multi-marginals case going backwards in time.

Sampling in the convex order Sampling in the convex order in higher dimensions

Projection error

Proposition Let $\rho \ge 1$, $\mu, \nu, \mu_I, \nu_J \in \mathcal{P}_{\rho}(\mathbb{R}^d)$ with $\mu \le_{cx} \nu$. Then $W_{\rho}(\mu_I, (\mu_I)_{\mathcal{P}(\nu_J)}^{\rho}) \le W_{\rho}(\mu, \mu_I) + W_{\rho}(\nu, \nu_J),$ $W_{\rho}(\mu, (\mu_I)_{\mathcal{P}(\nu_I)}^{\rho}) \le 2W_{\rho}(\mu, \mu_I) + W_{\rho}(\nu, \nu_J).$

Corollary

If
$$\mu \leq_{cx} \nu \in \mathcal{P}_{\rho}(\mathbb{R}^d)$$
 and $(X_i)_{i\geq 1}$ i.i.d. $\sim \mu$, $(Y_j)_{j\geq 1}$ i.i.d. $\sim \nu$,

$$\lim_{I,J\to\infty} W_{\rho}(\mu, (\frac{1}{I}\sum_{i=1}^{I}\delta_{X_i})_{\underline{\mathcal{P}}(\frac{1}{J}\sum_{j=1}^{J}\delta_{Y_j})}) = 0$$

- Rate of cv of $W_{\rho}(\mu, \frac{1}{I} \sum_{i=1}^{I} \delta_{X_i})$ as $I \to \infty$: Fournier and Guillin 2015,
- Extension to the multi-marginals case going backwards in time.

Sampling in the convex order

Non dependence on ρ when d = 1

Theorem If $\mu, \nu \in \mathcal{P}_1(\mathbb{R}), \exists$ a probability measure $\mu_{\mathcal{P}(\nu)}$ defined by : $\forall q \in [0, 1]$, $\int_{0}^{q} F_{\frac{\mu_{\mathcal{L}}(\nu)}{\nu}}^{-1}(p) dp = \int_{0}^{q} F_{\mu}^{-1}(p) dp - \operatorname{Conv}\left(\int_{0}^{\cdot} F_{\mu}^{-1}(p) - F_{\nu}^{-1}(p) dp\right)(q).$ If, for $\rho > 1$, $\mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R})$, then $\mu_{\mathcal{P}(\nu)}^{\rho} = \mu_{\mathcal{P}(\nu)}$. $(\frac{1}{I}\sum_{i=1}^{I}\delta_{X_i})_{\mathcal{P}(\frac{1}{I}\sum_{i=1}^{J}\delta_{Y_i})}$ can be computed with cost $\mathcal{O}(I\ln(I) + J\ln(J))$. $\nu_{\overline{\mathcal{P}}(\mu)}^{\rho}$ Wasserstein proj. of ν on the set $\overline{\mathcal{P}}(\mu)$ of probab. meas. larger than μ in the cvx order not easy to compute unless d = 1

$$\int_{0}^{q} F_{\nu_{\overline{\mathcal{P}}(\mu)}}^{-1}(p) dp = \int_{0}^{q} F_{\nu}^{-1}(p) dp + \operatorname{Conv}(\int_{0}^{\cdot} F_{\mu}^{-1}(p) - F_{\nu}^{-1}(p) dp)(q).$$

Sampling in the convex order

-Numerical results

1 Introduction

2 The dimension d = 1

3 Sampling in the convex order in higher dimensions

4 Numerical results

Sampling in the convex order

-Numerical results

Example with explicit MOT in dimension d = 2

- μ , ν uniform laws on $[-1, 1]^2$ and $[-2, 2]^2$.
- Cost function to minimize : $c(x, y) = |x^1 y^1|^{\rho} + |x^2 y^2|^{\rho}$, with $\rho > 2$.
- Optimal coupling : (X, Y) where $X \sim \mathcal{U}([-1, 1]^2)$, Y = X + Z, with $Z = (Z^1, Z^2)$ an independent couple of independent Rademacher r.v. $\mathbb{P}(Z_i = 1) = \mathbb{P}(Z_i = -1) = 1/2$. Optimal cost : 2.
- For I = 100, we have computed $(\mu_I)_{\underline{\mathcal{P}}(\nu_I)}^2$ and the MOT between $(\mu_I)_{\underline{\mathcal{P}}(\nu_I)}^2$ and ν_I on 100 independent runs \rightarrow 95% confidence interval : [1.9631, 2.0498].
- For the optimal coupling, $Y^2 Y^1 = X^2 X^1 + Z^2 Z^1$. Thus, we draw $y_i^2 y_i^1$ in function of $x_i^2 x_i^1$ for the points (x_i, y_i) with positive probability in the MOT, and the lines y = x 2, y = x and y = x + 2.

IntroductionSatThe dimension d = 1La order in higher dimensionsL

Sampling in the convex order

-Numerical results

Sampling in the convex order in higher dimensions Numerical results

Martingale Optimal transport

Sampling in the convex order

Financial example in dimension d = 2

• (G^1, G^2) centered Gaussian vector with covariance matrix $\Sigma = \begin{bmatrix} 0.5 & 0.1 \\ 0.1 & 0.1 \end{bmatrix}.$

•
$$\mu = \mathcal{L}(X^1, X^2)$$
 where $X^{\ell} = \exp(G^{\ell} - \Sigma_{\ell \ell}/2), \ell \in \{1, 2\}.$

•
$$\nu = \mathcal{L}(Y^1, Y^2)$$
 where $Y^{\ell} = \exp(\sqrt{2}G^{\ell} - \Sigma_{\ell\ell}), \ \ell \in \{1, 2\}.$

Payoff : max(Y¹ − X¹, Y² − X², 0) (positive part of the best performance). Black-Scholes price ≈ 0.345

•
$$\tilde{\mu}_I = \frac{1}{I} \sum_{i=1}^{I} \delta_{(X_i^1 + 1 - \bar{X}_i^1, X_i^2 + 1 - \bar{X}_i^2)}, \tilde{\nu}_I = \frac{1}{I} \sum_{i=1}^{I} \delta_{(Y_i^1 + 1 - \bar{Y}_i^1, Y_i^2 + 1 - \bar{Y}_i^2)}$$

- Lower bound (on 100 indep runs of $((\tilde{\mu}_{100})^2_{\underline{\mathcal{P}}(\tilde{\nu}_{100})}, \tilde{\nu}_{100})$: mean 0.2293, 95% confidence interval half-width 0.017,
- Upper bound : mean 0.4111, 95% CI half-width 0.0284

Sampling in the convex order

-Numerical results

Example with three marginals

• marginals :
$$\mu = \mathcal{L}(\exp(\sigma_X G - \frac{1}{2}\sigma_X^2) - 1),$$

 $\nu = \mathcal{L}(\exp(\sigma_Y G - \frac{1}{2}\sigma_Y^2) - 1)$ et $\eta = \mathcal{L}(\exp(\sigma_Z G - \frac{1}{2}\sigma_Z^2) - 1),$
with $G \sim \mathcal{N}(0, 1), \sigma_X = 0.24, \sigma_Y = 0.28, \sigma_Z = 0.32.$

- Payoff : $c(x, y, z) = (z \frac{x+y}{2})^+$, Black-Scholes price ≈ 0.0681 .
- lower bound : 0.0303, upper bound 0.0856 obtained with $(\hat{\mu}_{25}, \hat{\nu}_{25}, \hat{\eta}_{25})$ (Baker $((\tilde{\mu}_{2500})^2_{\underline{\mathcal{P}}((\tilde{\nu}_{2500})^2_{\mathcal{P}(\tilde{\eta}_{2500})}), (\tilde{\nu}_{2500})^2_{\underline{\mathcal{P}}(\tilde{\eta}_{2500})}), \tilde{\eta}_{2500})$).
- Minimisation/maximisation of

$$\sum_{i=1}^{J} p_i \sum_{j=1}^{J} \sum_{k=1}^{K} r_{ijk} c(x_i, y_j, z_k) \text{ under the constraints}$$

$$\begin{aligned} \forall i, j, k, \ r_{ijk} &\geq 0, \ \forall i, \sum_{j=1}^{J} \sum_{k=1}^{K} r_{ijk} = 1, \ \forall j, \sum_{i=1}^{I} p_i \sum_{k=1}^{K} r_{ijk} = q_j, \ \forall k, \sum_{i=1}^{I} p_i \sum_{j=1}^{J} r_{ijk} = s_k, \\ \forall i, \sum_{j=1}^{J} \sum_{k=1}^{K} r_{ijk} (y_j - x_i) = 0, \ \forall i, j, \sum_{k=1}^{K} r_{ijk} (z_k - y_j) = 0. \end{aligned}$$

Sampling in the convex order

-Numerical results

MOT for $(\hat{\mu}_{25}, \hat{\nu}_{25}, \hat{\eta}_{25})$ minimisation

Sampling in the convex order

Conclusion

- The methods that we have presented, enable to calculate with a MC method at the same time option prices, and their bounds on all other models sharing the same marginal laws.
- The accuracy of the price bounds (maybe not so important in practice) is limited by the dimension of the linear programming problem.
- Possible directions to overcome this limitation : entropic regularization and iterated Bregman projection (Benamou, Carlier, Cuturi, Nenna, 2015 in the OT case), relaxation of the martingale constraints and dual formulation (preprint of Guo and Obloj 2017).