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Introduction

The convex order

Let µ, ν ∈ P(Rd ) = {probability measures on Rd}. We say that µ is
smaller than ν for the convex order and we write µ ≤cx ν if

∀φ : Rd → R convex ,
∫
Rd
φ(x)µ(dx) ≤

∫
Rd
φ(y)ν(dy),

when the integrals are defined. For φ(x) = ±x , we obtain that∫
Rd
|y |ν(dy) <∞ and µ ≤cx ν ⇒

∫
Rd

xµ(dx) =

∫
Rd

yν(dy).

Strassen’s theorem : (1965) Assume
∫
Rd |y |ν(dy) <∞. µ ≤cx ν iff ∃

a martingale Markov kernel R(x ,dy) (∀x ∈ Rd ,
∫
Rd yR(x ,dy) = x)

such that
∫
µ(dx)R(x ,dy) = ν(dy) i.e. µR = ν.
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Martingale Optimal Transport in Finance

We assume r = 0. (St )t≥0 : price process of d assets. Suppose that
we know for 0 < T1 < T2 the law of ST1 and ST2 (denoted by µ and ν),
and that we want to price an option that pays c(ST1 ,ST2 ) at time T2,
with c : Rd × Rd → R.
Price bounds for the option :[

inf
R mart:µR=ν

∫
Rd×Rd

c(x , y)µ(dx)R(x ,dy), sup
R

∫
Rd×Rd

cµR
]
.

Multi-marginal case : payoff c(ST1 , . . . ,STn ) with c : (Rd )n → R.
Beiglböck, Henry-Labordère, Penkner (2013) : Duality and connection
with super/subhedging strategies. Many theoretical contributions
since.
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Sampling in the Convex order : motivation

When µ ≤cx ν are approximated by probability measures
µI =

∑I
i=1 piδxi and νJ =

∑J
j=1 qjδyj with finite supports such that

µI ≤cx νJ , then one can approximate MOT (µ, ν, c) by MOT (µI , νJ , c) a
finite dimensional linear programming problem for which there exist
efficient solvers (simplex, interior points,...) :{

mini/maximisation of
∑I

i=1
∑J

j=1 pi rijc(xi , yj ) under constraints
rij ≥ 0,

∑I
i=1 pi rij = qj ,

∑J
j=1 rij = 1 et

∑J
j=1 rij (xi − yj ) = 0

.

Monte-Carlo : if (Xi )i≥1 i.i.d. ∼ µ and (Yj )j≥1 i.i.d. ∼ ν, in general
µI = 1

I

∑I
i=1 δXi is not smaller than νJ = 1

J

∑J
j=1 δYj in the cvx order.

In general, 1
I

∑I
i=1 Xi 6= 1

J

∑J
j=1 Yj .
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Approximation techniques preserving the convex order
Dimension d = 1 : For η ∈ P(R), we denote Fη(x) = η(]−∞, x ])
and F−1

η (u) = inf{x ∈ R : Fη(x) ≥ u} the cumulative distribution
function and the quantile function of η.
If µ ≤cx ν, then (PhD thesis of David Baker UPMC 2012),

1
I

I∑
i=1

δ
I
∫ i

I
i−1

I

F−1
µ (u)du

≤cx
1
I

I∑
i=1

δ
I
∫ i

I
i−1

I

F−1
ν (u)du

, ∀I ∈ N∗.

Quantization :
The dual quantization (Pagès Wilbertz 2012) preserves the
convex order when d = 1. Whatever d , if ν compactly supported,
it gives a probability measure ν̂ with finite support s.t. ν ≤cx ν̂.
Stationary primal quantization gives a probability measure µ̌ with
finite support s.t. µ̌ ≤cx µ. So µ̌ ≤cx µ ≤cx ν ≤cx ν̂.
Limitations :

ν and therefore µ compactly supported,
only 2 marginals if d ≥ 2.
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A first idea : equalizing the means
Suppose µ ≤cx ν, X1, . . . ,XI i.i.d. ∼ µ and Y1, . . . ,YJ i.i.d. ∼ ν. We set
X̄I = 1

I

∑I
i=1 Xi and ȲJ = 1

J

∑J
j=1 Yj , and

µ̃I =
1
I

I∑
i=1

δXi +m−X̄I
, ν̃J =

1
J

J∑
j=1

δYj +m−ȲJ
,

with m =
∫

xµ(dx) if it is known explicitly (like in finance) or X̄I
otherwise.

Under conditions slightly stronger than µ ≤cx ν, a.s.,
∃M,∀I, J ≥ M, µ̃I ≤cx ν̃J .

For µ = L(exp(σµG − σ2
µ

2 )), ν = L(exp(σνG − σ2
ν

2 )) with
G ∼ N1(0,1), σµ = 0.24, σν = 0.28, P(µ̃100 ≤cx ν̃100) ≈ 0.45.
=⇒ need for a non asymptotic approach.

Benjamin Jourdain (Ecole des Ponts) 5 july 2018 7 / 22



Introduction
The dimension d = 1

Sampling in the convex order in higher dimensions
Numerical results

Sampling in the convex order

The dimension d = 1

1 Introduction

2 The dimension d = 1

3 Sampling in the convex order in higher dimensions

4 Numerical results

Benjamin Jourdain (Ecole des Ponts) 5 july 2018 8 / 22



Introduction
The dimension d = 1

Sampling in the convex order in higher dimensions
Numerical results

Sampling in the convex order

The dimension d = 1

Characterisation of the convex order when d = 1
For µ ∈ P1(R) = {η ∈ P(R) :

∫
R |x |η(dx) <∞}, we consider the

potential function

∀t ∈ R, Pµ(t) =

∫
R

(t − x)+µ(dx) =

∫ t

−∞
Fµ(x)dx

Theorem
Let µ, ν ∈ P1(R). One has µ ≤cx ν iff

∫
R xµ(dx) =

∫
R yν(dy) and one

of the following equivalent conditions hold
(i) ∀t ∈ R,Pµ(t) ≤ Pν(t),

(ii) ∀q ∈ [0,1],
∫ 1

q F−1
µ (p)dp ≤

∫ 1
q F−1

ν (p)dp.

R 3 t 7→ Pµ(t) is convex,
[0,1] 3 q 7→

∫ 1
q F−1

µ (p)dp is concave,
(i)⇒ preservation of the convex order by Baker’s approximation.
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The dimension d = 1

Infimum and Supremum

According to Kertz et Rösler 1992, 2000, for µ, ν ∈ P1(R) s.t.∫
R xµ(dx) =

∫
R yν(dy), one can define µ ∨ ν (smallest probability

measure larger than µ and ν for the convex order) and µ ∧ ν by

∀t ∈ R,
∫ t

−∞
Fµ∨ν(t)dt = Pµ∨ν(t) = Pµ ∨ Pν(t)

∀t ∈ R,
∫ t

−∞
Fµ∧ν(t)dt = Pµ∧ν(t) = Conv(Pµ ∧ Pν)(t)
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∫ 1

q
F−1
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(∫ 1
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(∫ 1
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F−1
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q
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ν (p)dp
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Explicit computation when µ and ν have finite supports.

In particular for µ̃I =
1
I

I∑
i=1

δXi +m−X̄I
, ν̃J =

1
J

J∑
j=1

δYj +m−ȲJ
,

computation of µ̃I ∧ ν̃J and µ̃I ∨ ν̃J for a cost O(I ln(I) + J ln(J)).
When µ ≤cx ν, a.s. µ̃I ∧ ν̃J → µ and µ̃I ∨ ν̃J → ν weakly as I, J →∞.
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A quadratic minimisation problem
No nice characterization of the convex order through potential
functions,
According to Müller Scarsini 2006, one cannot define µ ∨ ν and
µ ∧ ν for all µ, ν ∈ P1(Rd ) s.t.

∫
Rd xµ(dx) =

∫
Rd yν(dy).

For X1, . . . ,XI i.i.d. ∼ µ and Y1, . . . ,YJ i.i.d. ∼ ν, quadratic
minimisation problem with linear constraintsminimise 1

I

∑I
i=1

∣∣∣Xi −
∑J

j=1 rijYj

∣∣∣2
constraints ∀i , j , rij ≥ 0, ∀i ,

∑J
j=1 rij = 1 and ∀j , 1

I

∑I
i=1 rij = 1

J .

∃ a minimiser r?, which can be computed by efficient solvers.
1
I

∑I
i=1 δ

∑J
j=1 r?ij Yj

does not depend on the minimiser r? and ≤cx νJ

1
I

I∑
i=1

φ

( J∑
j=1

rijYj

)
Jensen
≤ 1

I

I∑
i=1

J∑
j=1

rijφ(Yj ) =
1
J

J∑
j=1

φ(Yj ).
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Generalisation
For a Markov kernel R on Rd , we set mR(x) =

∫
Rd yR(x ,dy). For

ρ ≥ 1 and µ, ν ∈ Pρ(Rd ), we want to minimise

Jρ(R) :=

∫
Rd
|x −mR(x)|ρµ(dx) on R kernel s.t. µR = ν.

Wasserstein distance

W ρ
ρ (µ, η) = inf

π<µη

∫
Rd×Rd

|x − y |ρπ(dx ,dy)
d=1
=

∫ 1

0
|F−1
µ − F−1

η |ρ(p)dp.

Theorem
infR:µR=ν Jρ(R) = infη≤cxν W ρ

ρ (µ, η) with the infima attained by R?, η?.
If ρ > 1, mR? is unique µ a.e.., η? = mR?#µ, π? = δmR? (x)(dy)µ(dx).

µρP(ν) := η? Wasserstein projection of µ on the set P(ν) of probability
measures dominated by ν for the convex order.
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Sampling in the convex order in higher dimensions

Projection error
Proposition
Let ρ ≥ 1, µ, ν, µI , νJ ∈ Pρ(Rd ) with µ ≤cx ν. Then

Wρ(µI , (µI)
ρ
P(νJ )) ≤Wρ(µ, µI) + Wρ(ν, νJ),

Wρ(µ, (µI)
ρ
P(νJ )) ≤ 2Wρ(µ, µI) + Wρ(ν, νJ).

Corollary
If µ ≤cx ν ∈ Pρ(Rd ) and (Xi )i≥1 i.i.d. ∼ µ, (Yj )j≥1 i.i.d. ∼ ν,
limI,J→∞Wρ(µ, ( 1

I

∑I
i=1 δXi )

ρ

P( 1
J
∑J

j=1 δYj )
) = 0

Rate of cv of Wρ(µ, 1
I

∑I
i=1 δXi ) as I →∞ : Fournier and Guillin

2015,
Extension to the multi-marginals case going backwards in time.
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Non dependence on ρ when d = 1
Theorem
If µ, ν ∈ P1(R), ∃ a probability measure µP(ν) defined by : ∀q ∈ [0,1],∫ q

0
F−1
µP(ν)

(p)dp =

∫ q

0
F−1
µ (p)dp−Conv

(∫ .

0
F−1
µ (p)−F−1

ν (p)dp
)

(q).

If, for ρ > 1, µ, ν ∈ Pρ(R), then µρP(ν) = µP(ν).

( 1
I

∑I
i=1 δXi )P( 1

J
∑J

j=1 δYj )
can be computed with cost O(I ln(I) + J ln(J)).

νρP(µ)
Wasserstein proj. of ν on the set P(µ) of probab. meas. larger

than µ in the cvx order not easy to compute unless d = 1∫ q

0
F−1
νP(µ)

(p)dp =

∫ q

0
F−1
ν (p)dp + Conv(

∫ .

0
F−1
µ (p)− F−1

ν (p)dp)(q).
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Numerical results

Example with explicit MOT in dimension d = 2
µ, ν uniform laws on [−1,1]2 and [−2,2]2.
Cost function to minimize : c(x , y) = |x1 − y1|ρ + |x2 − y2|ρ, with
ρ > 2.
Optimal coupling : (X ,Y ) where X ∼ U([−1,1]2), Y = X + Z ,
with Z = (Z 1,Z 2) an independent couple of independent
Rademacher r.v. P(Zi = 1) = P(Zi = −1) = 1/2.
Optimal cost : 2.
For I = 100, we have computed (µI)

2
P(νI )

and the MOT between
(µI)

2
P(νI )

and νI on 100 independent runs→ 95% confidence
interval : [1.9631,2.0498].
For the optimal coupling, Y 2 − Y 1 = X 2 − X 1 + Z 2 − Z 1. Thus,
we draw y2

i − y1
i in function of x2

i − x1
i for the points (xi , yi ) with

positive probability in the MOT, and the lines y = x − 2, y = x
and y = x + 2.
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Martingale Optimal transport
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Financial example in dimension d = 2

(G1,G2) centered Gaussian vector with covariance matrix

Σ =

[
0.5 0.1
0.1 0.1

]
.

µ = L(X 1,X 2) where X ` = exp(G` − Σ``/2), ` ∈ {1,2}.
ν = L(Y 1,Y 2) where Y ` = exp(

√
2G` − Σ``), ` ∈ {1,2}.

Payoff : max(Y 1 − X 1,Y 2 − X 2,0) (positive part of the best
performance). Black-Scholes price ≈ 0.345

µ̃I = 1
I

∑I
i=1 δ(X 1

i +1−X̄ 1
I ,X

2
i +1−X̄ 2

I ), ν̃I = 1
I

∑I
i=1 δ(Y 1

i +1−Ȳ 1
I ,Y

2
i +1−Ȳ 2

I )

Lower bound (on 100 indep runs of ((µ̃100)2
P(ν̃100), ν̃100) : mean

0.2293, 95% confidence interval half-width 0.017,
Upper bound : mean 0.4111, 95% CI half-width 0.0284
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Example with three marginals
marginals : µ = L(exp

(
σX G − 1

2σ
2
X

)
− 1),

ν = L(exp
(
σY G − 1

2σ
2
Y

)
− 1) et η = L(exp

(
σZ G − 1

2σ
2
Z

)
− 1),

withG ∼ N (0,1), σX = 0.24, σY = 0.28, σZ = 0.32.
Payoff : c(x , y , z) = (z − x+y

2 )+, Black-Scholes price ≈ 0.0681.
lower bound : 0.0303, upper bound 0.0856 obtained with
(µ̂25, ν̂25, η̂25) (Baker ((µ̃2500)2

P
(

(ν̃2500)2
P(η̃2500)

), (ν̃2500)2
P(η̃2500), η̃2500)).

Minimisation/maximisation of

I∑
i=1

pi

J∑
j=1

K∑
k=1

rijk c(xi , yj , zk ) under the constraints

∀i, j, k, rijk ≥ 0, ∀i,
J∑

j=1

K∑
k=1

rijk = 1, ∀j,
I∑

i=1

pi

K∑
k=1

rijk = qj , ∀k,
I∑

i=1

pi

J∑
j=1

rijk = sk ,

∀i,
J∑

j=1

K∑
k=1

rijk (yj − xi ) = 0, ∀i, j,
K∑

k=1

rijk (zk − yj ) = 0.
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MOT for (µ̂25, ν̂25, η̂25) minimisation
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Conclusion

The methods that we have presented, enable to calculate with a
MC method at the same time option prices, and their bounds on
all other models sharing the same marginal laws.
The accuracy of the price bounds (maybe not so important in
practice) is limited by the dimension of the linear programming
problem.
Possible directions to overcome this limitation : entropic
regularization and iterated Bregman projection (Benamou,
Carlier, Cuturi, Nenna, 2015 in the OT case), relaxation of the
martingale constraints and dual formulation (preprint of Guo and
Obloj 2017).

Benjamin Jourdain (Ecole des Ponts) 5 july 2018 22 / 22


	Introduction
	The dimension d=1
	Sampling in the convex order in higher dimensions
	Numerical results

