Sampling of probability measures in the convex order and approximation of Martingale Optimal Transport problems

Benjamin Jourdain

CERMICS, Ecole des Ponts, University Paris-Est
Joint work with Aurélien Alfonsi and Jacopo Corbetta

MCQMC 2018

5 july 2018

Structure of the talk

(1) Introduction
(2) The dimension $d=1$

3 Sampling in the convex order in higher dimensions

4 Numerical results

The convex order

Let $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)=\left\{\right.$ probability measures on $\left.\mathbb{R}^{d}\right\}$. We say that μ is smaller than ν for the convex order and we write $\mu \leq_{c x} \nu$ if

$$
\forall \phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex }, \int_{\mathbb{R}^{d}} \phi(x) \mu(d x) \leq \int_{\mathbb{R}^{d}} \phi(y) \nu(d y)
$$

when the integrals are defined. For $\phi(x)= \pm x$, we obtain that

$$
\int_{\mathbb{R}^{d}}|y| \nu(d y)<\infty \text { and } \mu \leq_{\mathrm{cx}} \nu \Rightarrow \int_{\mathbb{R}^{d}} x \mu(d x)=\int_{\mathbb{R}^{d}} y \nu(d y) .
$$

Strassen's theorem : (1965) Assume

The convex order

Let $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)=\left\{\right.$ probability measures on $\left.\mathbb{R}^{d}\right\}$. We say that μ is smaller than ν for the convex order and we write $\mu \leq_{c x} \nu$ if

$$
\forall \phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex }, \int_{\mathbb{R}^{d}} \phi(x) \mu(d x) \leq \int_{\mathbb{R}^{d}} \phi(y) \nu(d y)
$$

when the integrals are defined. For $\phi(x)= \pm x$, we obtain that

$$
\int_{\mathbb{R}^{d}}|y| \nu(d y)<\infty \text { and } \mu \leq_{\mathrm{cx}} \nu \Rightarrow \int_{\mathbb{R}^{d}} x \mu(d x)=\int_{\mathbb{R}^{d}} y \nu(d y) .
$$

Strassen's theorem : (1965) Assume $\int_{\mathbb{R}^{d}}|y| \nu(d y)<\infty . \mu \leq_{c x} \nu$ iff \exists a martingale Markov kernel $R(x, d y)\left(\forall x \in \mathbb{R}^{d}, \int_{\mathbb{R}^{d}} y R(x, d y)=x\right)$ such that $\int \mu(d x) R(x, d y)=\nu(d y)$ i.e. $\mu R=\nu$.

Martingale Optimal Transport in Finance

We assume $r=0$. $\left(S_{t}\right)_{t \geq 0}$: price process of d assets. Suppose that we know for $0<T_{1}<T_{2}$ the law of $S_{T_{1}}$ and $S_{T_{2}}$ (denoted by μ and ν), and that we want to price an option that pays $c\left(S_{T_{1}}, S_{T_{2}}\right)$ at time T_{2}, with $c: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Price bounds for the option :

$$
\left[\inf _{R \operatorname{mart}: \mu R=\nu} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} c(x, y) \mu(d x) R(x, d y), \sup _{R} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} c \mu R\right] .
$$

Multi-marginal case : payoff $c\left(S_{T_{1}}, \ldots, S_{T_{n}}\right)$ with $c:\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}$. Beiglböck, Henry-Labordère, Penkner (2013) : Duality and connection with super/subhedging strategies. Many theoretical contributions since.

Sampling in the Convex order : motivation

When $\mu \leq_{\mathrm{cx}} \nu$ are approximated by probability measures
$\mu_{I}=\sum_{i=1}^{l} p_{i} \delta_{x_{i}}$ and $\nu_{J}=\sum_{j=1}^{J} q_{j} \delta_{y_{j}}$ with finite supports such that $\mu_{l} \leq_{c x} \nu_{J}$, then one can approximate $\operatorname{MOT}(\mu, \nu, c)$ by $\operatorname{MOT}\left(\mu_{l}, \nu_{J}, c\right)$ a finite dimensional linear programming problem for which there exist efficient solvers (simplex, interior points,...) :

$$
\left\{\begin{array}{l}
\text { mini/maximisation of } \sum_{i=1}^{l} \sum_{j=1}^{J} p_{i} r_{i j} c\left(x_{i}, y_{j}\right) \text { under constraints } \\
r_{i j} \geq 0, \sum_{i=1}^{l} p_{i} r_{i j}=q_{j}, \sum_{j=1}^{J} r_{i j}=1 \text { et } \sum_{j=1}^{J} r_{i j}\left(x_{i}-y_{j}\right)=0
\end{array}\right.
$$

Sampling in the Convex order : motivation

When $\mu \leq_{\mathrm{cx}} \nu$ are approximated by probability measures
$\mu_{I}=\sum_{i=1}^{l} p_{i} \delta_{x_{i}}$ and $\nu_{J}=\sum_{j=1}^{J} q_{j} \delta_{y_{j}}$ with finite supports such that $\mu_{l} \leq_{c x} \nu_{J}$, then one can approximate $\operatorname{MOT}(\mu, \nu, c)$ by $\operatorname{MOT}\left(\mu_{l}, \nu_{J}, c\right)$ a finite dimensional linear programming problem for which there exist efficient solvers (simplex, interior points,...) :

$$
\left\{\begin{array}{l}
\text { mini/maximisation of } \sum_{i=1}^{l} \sum_{j=1}^{J} p_{i} r_{i j} c\left(x_{i}, y_{j}\right) \text { under constraints } \\
r_{i j} \geq 0, \sum_{i=1}^{l} p_{i} r_{i j}=q_{j}, \sum_{j=1}^{J} r_{i j}=1 \text { et } \sum_{j=1}^{J} r_{i j}\left(x_{i}-y_{j}\right)=0
\end{array}\right.
$$

Monte-Carlo: if $\left(X_{i}\right)_{i \geq 1}$ i.i.d. $\sim \mu$ and $\left(Y_{j}\right)_{j \geq 1}$ i.i.d. $\sim \nu$, in general $\mu_{I}=\frac{1}{l} \sum_{i=1}^{l} \delta_{X_{i}}$ is not smaller than $\nu_{J}=\frac{1}{J} \sum_{j=1}^{J} \delta Y_{j}$ in the cvx order. In general, $\frac{1}{1} \sum_{i=1}^{l} X_{i} \neq \frac{1}{J} \sum_{j=1}^{J} Y_{j}$.

Approximation techniques preserving the convex order

 Dimension $d=1$: For $\eta \in \mathcal{P}(\mathbb{R})$, we denote $\left.\left.F_{\eta}(x)=\eta(]-\infty, x\right]\right)$ and $F_{\eta}^{-1}(u)=\inf \left\{x \in \mathbb{R}: F_{\eta}(x) \geq u\right\}$ the cumulative distribution function and the quantile function of η.If $\mu \leq_{\mathrm{cx}} \nu$, then (PhD thesis of David Baker UPMC 2012),

$$
\frac{1}{l} \sum_{i=1}^{1} \delta_{I \int_{\frac{i l 1}{T}}^{i} F_{\mu}^{-1}(u) d u} \leq \mathrm{cx} \frac{1}{l} \sum_{i=1}^{1} \delta_{I \int_{i=1}^{i} F_{\nu}^{-1}(u) d u}, \forall I \in \mathbb{N}^{*} .
$$

Approximation techniques preserving the convex order

Dimension $d=1$: For $\eta \in \mathcal{P}(\mathbb{R})$, we denote $\left.\left.F_{\eta}(x)=\eta(]-\infty, x\right]\right)$ and $F_{\eta}^{-1}(u)=\inf \left\{x \in \mathbb{R}: F_{\eta}(x) \geq u\right\}$ the cumulative distribution function and the quantile function of η.
If $\mu \leq_{\mathrm{cx}} \nu$, then (PhD thesis of David Baker UPMC 2012),

$$
\frac{1}{l} \sum_{i=1}^{1} \delta_{I \int_{\frac{i-1}{T}}^{i} F_{\mu}^{-1}(u) d u} \leq \leq_{c x} \frac{1}{l} \sum_{i=1}^{1} \delta_{I \int_{i=1}^{i} F_{\nu}^{-1}(u) d u}, \forall I \in \mathbb{N}^{*} .
$$

Quantization :

- The dual quantization (Pagès Wilbertz 2012) preserves the convex order when $d=1$. Whatever d, if ν compactly supported, it gives a probability measure $\hat{\nu}$ with finite support s.t. $\nu \leq_{\mathrm{cx}} \hat{\nu}$.
- Stationary primal quantization gives a probability measure $\check{\mu}$ with finite support s.t. $\check{\mu} \leq_{c x} \mu$. So $\check{\mu} \leq_{c x} \mu \leq_{c x} \nu \leq_{c x} \hat{\nu}$.
- Limitations:
- ν and therefore μ compactly supported,
- only 2 marginals if $d>2$.

A first idea : equalizing the means

Suppose $\mu \leq_{c x} \nu, X_{1}, \ldots, X_{I}$ i.i.d. $\sim \mu$ and Y_{1}, \ldots, Y_{J} i.i.d. $\sim \nu$. We set $\bar{X}_{l}=\frac{1}{l} \sum_{i=1}^{l} X_{i}$ and $\bar{Y}_{J}=\frac{1}{J} \sum_{j=1}^{J} Y_{j}$, and

$$
\tilde{\mu}_{I}=\frac{1}{l} \sum_{i=1}^{l} \delta_{X_{i}+m-\bar{X}_{l}}, \tilde{\nu}_{J}=\frac{1}{J} \sum_{j=1}^{J} \delta_{Y_{j}+m-\bar{Y}_{J}},
$$

with $m=\int x \mu(d x)$ if it is known explicitly (like in finance) or \bar{X}_{I} otherwise.

- Under conditions slightly stronger than $\mu \leq_{c x} \nu$, a.s., $\exists M, \forall I, J \geq M, \tilde{\mu}_{I} \leq_{c x} \tilde{\nu}_{J}$.
- For $\mu=\mathcal{L}\left(\exp \left(\sigma_{\mu} G-\frac{\sigma_{\mu}^{2}}{2}\right)\right), \nu=\mathcal{L}\left(\exp \left(\sigma_{\nu} G-\frac{\sigma_{\nu}^{2}}{2}\right)\right)$ with $G \sim \mathcal{N}_{1}(0,1), \sigma_{\mu}=0.24, \sigma_{\nu}=0.28, \mathbb{P}\left(\tilde{\mu}_{100} \leq_{c x} \tilde{\nu}_{100}\right) \approx 0.45$.
\Longrightarrow need for a non asymptotic approach.
(2) The dimension $d=1$

3 Sampling in the convex order in higher dimensions

4 Numerical results

Characterisation of the convex order when $d=1$

For $\mu \in \mathcal{P}_{1}(\mathbb{R})=\left\{\eta \in \mathcal{P}(\mathbb{R}): \int_{\mathbb{R}}|x| \eta(d x)<\infty\right\}$, we consider the potential function

$$
\forall t \in \mathbb{R}, P_{\mu}(t)=\int_{\mathbb{R}}(t-x)^{+} \mu(d x)=\int_{-\infty}^{t} F_{\mu}(x) d x
$$

Theorem

Let $\mu, \nu \in \mathcal{P}_{1}(\mathbb{R})$. One has $\mu \leq_{\mathrm{c} x} \nu$ iff $\int_{\mathbb{R}} x \mu(d x)=\int_{\mathbb{R}} y \nu(d y)$ and one of the following equivalent conditions hold
(i) $\forall t \in \mathbb{R}, P_{\mu}(t) \leq P_{\nu}(t)$,
(ii) $\forall q \in[0,1], \int_{q}^{1} F_{\mu}^{-1}(p) d p \leq \int_{q}^{1} F_{\nu}^{-1}(p) d p$.

- $\mathbb{R} \ni t \mapsto P_{\mu}(t)$ is convex,
- $[0,1] \ni q \mapsto \int_{q}^{1} F_{\mu}^{-1}(p) d p$ is concave,
- (i) \Rightarrow preservation of the convex order by Baker's approximation.

Infimum and Supremum

According to Kertz et Rösler 1992, 2000, for $\mu, \nu \in \mathcal{P}_{1}(\mathbb{R})$ s.t. $\int_{\mathbb{R}} x \mu(d x)=\int_{\mathbb{R}} y \nu(d y)$, one can define $\mu \vee \nu$ (smallest probability measure larger than μ and ν for the convex order) and $\mu \wedge \nu$ by

$$
\begin{aligned}
& \forall t \in \mathbb{R}, \int_{-\infty}^{t} F_{\mu \vee \nu}(t) d t=P_{\mu \vee \nu}(t)=P_{\mu} \vee P_{\nu}(t) \\
& \forall t \in \mathbb{R}, \int_{-\infty}^{t} F_{\mu \wedge \nu}(t) d t=P_{\mu \wedge \nu}(t)=\operatorname{Conv}\left(P_{\mu} \wedge P_{\nu}\right)(t)
\end{aligned}
$$

Infimum and Supremum

According to Kertz et Rösler 1992, 2000, for $\mu, \nu \in \mathcal{P}_{1}(\mathbb{R})$ s.t. $\int_{\mathbb{R}} x \mu(d x)=\int_{\mathbb{R}} y \nu(d y)$, one can define $\mu \vee \nu$ (smallest probability measure larger than μ and ν for the convex order) and $\mu \wedge \nu$ by

$$
\begin{aligned}
& \forall t \in \mathbb{R}, \int_{-\infty}^{t} F_{\mu \vee \nu}(t) d t=P_{\mu \vee \nu}(t)=P_{\mu} \vee P_{\nu}(t) \\
& \forall q \in(0,1), \int_{q}^{1} F_{\mu \wedge \nu}^{-1}(p) d p=\left(\int_{q}^{1} F_{\mu}^{-1}(p) d p\right) \wedge\left(\int_{q}^{1} F_{\nu}^{-1}(p) d p\right) .
\end{aligned}
$$

Infimum and Supremum

According to Kertz et Rösler 1992, 2000, for $\mu, \nu \in \mathcal{P}_{1}(\mathbb{R})$ s.t.
$\int_{\mathbb{R}} x \mu(d x)=\int_{\mathbb{R}} y \nu(d y)$, one can define $\mu \vee \nu$ (smallest probability measure larger than μ and ν for the convex order) and $\mu \wedge \nu$ by

$$
\begin{aligned}
& \forall t \in \mathbb{R}, \int_{-\infty}^{t} F_{\mu \vee \nu}(t) d t=P_{\mu \vee \nu}(t)=P_{\mu} \vee P_{\nu}(t) \\
& \forall q \in(0,1), \int_{q}^{1} F_{\mu \wedge \nu}^{-1}(p) d p=\left(\int_{q}^{1} F_{\mu}^{-1}(p) d p\right) \wedge\left(\int_{q}^{1} F_{\nu}^{-1}(p) d p\right) .
\end{aligned}
$$

Explicit computation when μ and ν have finite supports.

$$
\text { In particular for } \tilde{\mu}_{I}=\frac{1}{l} \sum_{i=1}^{l} \delta_{X_{i}+m-\bar{X}_{l}}, \quad \tilde{\nu}_{J}=\frac{1}{J} \sum_{j=1}^{J} \delta_{Y_{j}+m-\bar{Y}_{J}} \text {, }
$$

computation of $\tilde{\mu}_{I} \wedge \tilde{\nu}_{J}$ and $\tilde{\mu}_{I} \vee \tilde{\nu}_{J}$ for a cost $\mathcal{O}(I \ln (I)+J \ln (J))$.
When $\mu \leq_{c x} \nu$, a.s. $\tilde{\mu}_{I} \wedge \tilde{\nu}_{J} \rightarrow \mu$ and $\tilde{\mu}_{I} \vee \tilde{\nu}_{J} \rightarrow \nu$ weakly as $I, J \rightarrow \infty$.

(2) The dimension $d=1$

3 Sampling in the convex order in higher dimensions

4 Numerical results

A quadratic minimisation problem

- No nice characterization of the convex order through potential functions,
- According to Müller Scarsini 2006, one cannot define $\mu \vee \nu$ and $\mu \wedge \nu$ for all $\mu, \nu \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ s.t. $\int_{\mathbb{R}^{d}} x \mu(d x)=\int_{\mathbb{R}^{d}} y \nu(d y)$.

A quadratic minimisation problem

- No nice characterization of the convex order through potential functions,
- According to Müller Scarsini 2006, one cannot define $\mu \vee \nu$ and $\mu \wedge \nu$ for all $\mu, \nu \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ s.t. $\int_{\mathbb{R}^{d}} x \mu(d x)=\int_{\mathbb{R}^{d}} y \nu(d y)$.
For X_{1}, \ldots, X_{l} i.i.d. $\sim \mu$ and Y_{1}, \ldots, Y_{J} i.i.d. $\sim \nu$, quadratic
minimisation problem with linear constraints

$$
\left\{\begin{array}{l}
\text { minimise } \frac{1}{l} \sum_{i=1}^{\prime}\left|X_{i}-\sum_{j=1}^{J} r_{i j} Y_{j}\right|^{2} \\
\text { constraints } \forall i, j, r_{i j} \geq 0, \forall i, \sum_{j=1}^{J} r_{i j}=1 \text { and } \forall j, \frac{1}{l} \sum_{i=1}^{\prime} r_{i j}=\frac{1}{J} .
\end{array}\right.
$$

A quadratic minimisation problem

- No nice characterization of the convex order through potential functions,
- According to Müller Scarsini 2006, one cannot define $\mu \vee \nu$ and $\mu \wedge \nu$ for all $\mu, \nu \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ s.t. $\int_{\mathbb{R}^{d}} x \mu(d x)=\int_{\mathbb{R}^{d}} y \nu(d y)$.
For X_{1}, \ldots, X_{l} i.i.d. $\sim \mu$ and Y_{1}, \ldots, Y_{J} i.i.d. $\sim \nu$, quadratic
minimisation problem with linear constraints
$\left\{\begin{array}{l}\text { minimise } \frac{1}{l} \sum_{i=1}^{\prime}\left|X_{i}-\sum_{j=1}^{J} r_{i j} Y_{j}\right|^{2} \\ \text { constraints } \forall i, j, r_{i j} \geq 0, \forall i, \sum_{j=1}^{J} r_{i j}=1 \text { and } \forall j, \frac{1}{1} \sum_{i=1}^{\prime} r_{i j}=\frac{1}{J} .\end{array}\right.$
- \exists a minimiser r^{\star}, which can be computed by efficient solvers.
- $\frac{1}{l} \sum_{i=1}^{\prime} \delta_{\sum_{j=1}^{J} r_{i j} Y_{j}}$ does not depend on the minimiser r^{\star} and $\leq_{c x} \nu_{J}$

$$
\frac{1}{l} \sum_{i=1}^{I} \phi\left(\sum_{j=1}^{J} r_{i j} Y_{j}\right) \stackrel{\text { Jensen }}{\leq} \frac{1}{l} \sum_{i=1}^{I} \sum_{j=1}^{J} r_{i j} \phi\left(Y_{j}\right)=\frac{1}{J} \sum_{j=1}^{J} \phi\left(Y_{j}\right)
$$

Generalisation

For a Markov kernel R on \mathbb{R}^{d}, we set $m_{R}(x)=\int_{\mathbb{R}^{d}} y R(x, d y)$. For $\rho \geq 1$ and $\mu, \nu \in \mathcal{P}_{\rho}\left(\mathbb{R}^{d}\right)$, we want to minimise

$$
\mathcal{J}_{\rho}(R):=\int_{\mathbb{R}^{d}}\left|x-m_{R}(x)\right|^{\rho} \mu(d x) \text { on } R \text { kernel s.t. } \mu R=\nu
$$

Wasserstein distance

$$
W_{\rho}^{\rho}(\mu, \eta)=\inf _{\pi<{ }_{\eta}^{\mu}} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{\rho} \pi(d x, d y) \stackrel{d=1}{=} \int_{0}^{1}\left|F_{\mu}^{-1}-F_{\eta}^{-1}\right|^{\rho}(p) d p
$$

Generalisation

For a Markov kernel R on \mathbb{R}^{d}, we set $m_{R}(x)=\int_{\mathbb{R}^{d}} y R(x, d y)$. For $\rho \geq 1$ and $\mu, \nu \in \mathcal{P}_{\rho}\left(\mathbb{R}^{d}\right)$, we want to minimise

$$
\mathcal{J}_{\rho}(R):=\int_{\mathbb{R}^{d}}\left|x-m_{R}(x)\right|^{\rho} \mu(d x) \text { on } R \text { kernel s.t. } \mu R=\nu
$$

Wasserstein distance

$$
W_{\rho}^{\rho}(\mu, \eta)=\inf _{\pi<{ }_{\eta}^{\mu}} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{\rho} \pi(d x, d y) \stackrel{d=1}{=} \int_{0}^{1}\left|F_{\mu}^{-1}-F_{\eta}^{-1}\right|^{\rho}(p) d p
$$

Theorem

$\inf _{R: \mu R=\nu} \mathcal{J}_{\rho}(R)=\inf _{\eta \leq_{\alpha x} \nu} W_{\rho}^{\rho}(\mu, \eta)$ with the infima attained by R_{\star}, η_{\star}. If $\rho>1, m_{R_{\star}}$ is unique μ a.e.., $\eta_{\star}=m_{R_{\star}} \# \mu, \pi_{\star}=\delta_{m_{R_{\star}}(x)}(d y) \mu(d x)$.
$\mu_{\mathcal{\mathcal { P }}(\nu)}^{\rho}:=\eta_{\star}$ Wasserstein projection of μ on the set $\underline{\mathcal{P}}(\nu)$ of probability measures dominated by ν for the convex order.

Projection error
 Proposition

Let $\rho \geq 1, \mu, \nu, \mu_{I}, \nu_{J} \in \mathcal{P}_{\rho}\left(\mathbb{R}^{d}\right)$ with $\mu \leq_{c x} \nu$. Then

$$
\begin{aligned}
W_{\rho}\left(\mu_{l},\left(\mu_{l}\right)_{\mathcal{P}\left(\nu_{J}\right)}^{\rho}\right) & \leq W_{\rho}\left(\mu, \mu_{l}\right)+W_{\rho}\left(\nu, \nu_{J}\right) \\
W_{\rho}\left(\mu,\left(\mu_{l}\right)_{\mathcal{P}\left(\nu_{J}\right)}^{\rho}\right) & \leq 2 W_{\rho}\left(\mu, \mu_{l}\right)+W_{\rho}\left(\nu, \nu_{J}\right)
\end{aligned}
$$

Projection error

Proposition

Let $\rho \geq 1, \mu, \nu, \mu_{I}, \nu_{J} \in \mathcal{P}_{\rho}\left(\mathbb{R}^{d}\right)$ with $\mu \leq_{\mathrm{cx}} \nu$. Then

$$
\begin{aligned}
W_{\rho}\left(\mu_{l},\left(\mu_{l}\right)_{\mathcal{P}\left(\nu_{J}\right)}^{\rho}\right) & \leq W_{\rho}\left(\mu, \mu_{l}\right)+W_{\rho}\left(\nu, \nu_{J}\right) \\
W_{\rho}\left(\mu,\left(\mu_{l}\right)_{\mathcal{P}\left(\nu_{J}\right)}^{\rho}\right) & \leq 2 W_{\rho}\left(\mu, \mu_{l}\right)+W_{\rho}\left(\nu, \nu_{J}\right)
\end{aligned}
$$

Corollary

If $\mu \leq_{c x} \nu \in \mathcal{P}_{\rho}\left(\mathbb{R}^{d}\right)$ and $\left(X_{i}\right)_{i \geq 1}$ i.i.d. $\sim \mu,\left(Y_{j}\right)_{j \geq 1}$ i.i.d. $\sim \nu$, $\lim _{l, J \rightarrow \infty} W_{\rho}\left(\mu,\left(\frac{1}{l} \sum_{i=1}^{l} \delta X_{i}\right)_{\mathcal{P}\left(\frac{1}{J} \sum_{j=1}^{J} \delta_{Y_{j}}\right)}^{\rho}\right)=0$

- Rate of cv of $W_{\rho}\left(\mu, \frac{1}{7} \sum_{i=1}^{l} \delta_{X_{i}}\right)$ as $I \rightarrow \infty$: Fournier and Guillin 2015,
- Extension to the multi-marginals case going backwards in time.

Non dependence on ρ when $d=1$

Theorem

If $\mu, \nu \in \mathcal{P}_{1}(\mathbb{R}), \exists$ a probability measure $\mu_{\underline{\mathcal{P}}(\nu)}$ defined by: $\forall q \in[0,1]$,
$\int_{0}^{q} F_{\mu_{\mathcal{P}(\nu)}}^{-1}(p) d p=\int_{0}^{q} F_{\mu}^{-1}(p) d p-\operatorname{Conv}\left(\int_{0} F_{\mu}^{-1}(p)-F_{\nu}^{-1}(p) d p\right)(q)$.
If, for $\rho>1, \mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R})$, then $\mu_{\underline{\mathcal{P}}(\nu)}^{\rho}=\mu_{\underline{\mathcal{P}}(\nu)}$.
$\left(\frac{1}{l} \sum_{i=1}^{l} \delta_{X_{i}}\right)_{\mathcal{P}\left(\frac{1}{j} \sum_{j=1}^{J} \delta_{Y_{j}}\right)}$ can be computed with cost $\mathcal{O}(I \ln (I)+J \ln (J))$. $\nu_{\overline{\mathcal{P}}(\mu)}^{\rho}$ Wasserstein proj. of ν on the set $\overline{\mathcal{P}}(\mu)$ of probab. meas. larger than μ in the cvx order not easy to compute unless $d=1$

$$
\int_{0}^{q} F_{\nu_{\overline{\mathcal{P}}(\mu)}}^{-1}(p) d p=\int_{0}^{q} F_{\nu}^{-1}(p) d p+\operatorname{Conv}\left(\int_{0} F_{\mu}^{-1}(p)-F_{\nu}^{-1}(p) d p\right)(q)
$$

(2) The dimension $d=1$

3 Sampling in the convex order in higher dimensions

4. Numerical results

Example with explicit MOT in dimension $d=2$

- μ, ν uniform laws on $[-1,1]^{2}$ and $[-2,2]^{2}$.
- Cost function to minimize : $c(x, y)=\left|x^{1}-y^{1}\right|^{\rho}+\left|x^{2}-y^{2}\right|^{\rho}$, with $\rho>2$.
- Optimal coupling : (X, Y) where $X \sim \mathcal{U}\left([-1,1]^{2}\right), Y=X+Z$, with $Z=\left(Z^{1}, Z^{2}\right)$ an independent couple of independent Rademacher r.v. $\mathbb{P}\left(Z_{i}=1\right)=\mathbb{P}\left(Z_{i}=-1\right)=1 / 2$. Optimal cost : 2.
- For $I=100$, we have computed $\left(\mu_{l}\right)_{\underline{\mathcal{P}}\left(\nu_{l}\right)}^{2}$ and the MOT between $\left(\mu_{l}\right)_{\mathcal{\mathcal { P }}\left(\nu_{l}\right)}^{2}$ and ν_{l} on 100 independent runs $\rightarrow 95 \%$ confidence interval : [1.9631, 2.0498].
- For the optimal coupling, $Y^{2}-Y^{1}=X^{2}-X^{1}+Z^{2}-Z^{1}$. Thus, we draw $y_{i}^{2}-y_{i}^{1}$ in function of $x_{i}^{2}-x_{i}^{1}$ for the points $\left(x_{i}, y_{i}\right)$ with positive probability in the MOT, and the lines $y=x-2, y=x$ and $y=x+2$.

Martingale Optimal transport

Financial example in dimension $d=2$

- $\left(G^{1}, G^{2}\right)$ centered Gaussian vector with covariance matrix $\Sigma=\left[\begin{array}{ll}0.5 & 0.1 \\ 0.1 & 0.1\end{array}\right]$.
- $\mu=\mathcal{L}\left(X^{1}, X^{2}\right)$ where $X^{\ell}=\exp \left(G^{\ell}-\Sigma_{\ell \ell} / 2\right), \ell \in\{1,2\}$.
- $\nu=\mathcal{L}\left(Y^{1}, Y^{2}\right)$ where $Y^{\ell}=\exp \left(\sqrt{2} G^{\ell}-\Sigma_{\ell \ell}\right), \ell \in\{1,2\}$.
- Payoff : $\max \left(Y^{1}-X^{1}, Y^{2}-X^{2}, 0\right)$ (positive part of the best performance). Black-Scholes price ≈ 0.345
- $\tilde{\mu}_{l}=\frac{1}{l} \sum_{i=1}^{l} \delta_{\left(X_{i}^{1}+1-\bar{X}_{l}^{1}, X_{i}^{2}+1-\bar{X}_{l}^{2}\right)}, \tilde{\nu}_{l}=\frac{1}{l} \sum_{i=1}^{l} \delta_{\left(Y_{i}^{1}+1-\bar{Y}_{l}^{1}, Y_{i}^{2}+1-\bar{Y}_{l}^{2}\right)}$
- Lower bound (on 100 indep runs of $\left(\left(\tilde{\mu}_{100}\right)_{\mathcal{P}\left(\tilde{\nu}_{100}\right)}^{2}, \tilde{\nu}_{100}\right)$: mean 0.2293, 95\% confidence interval half-width 0.017,
- Upper bound : mean $0.4111,95 \% \mathrm{Cl}$ half-width 0.0284

Example with three marginals

- marginals : $\mu=\mathcal{L}\left(\exp \left(\sigma_{X} G-\frac{1}{2} \sigma_{X}^{2}\right)-1\right)$, $\nu=\mathcal{L}\left(\exp \left(\sigma_{Y} G-\frac{1}{2} \sigma_{Y}^{2}\right)-1\right)$ et $\eta=\mathcal{L}\left(\exp \left(\sigma_{Z} G-\frac{1}{2} \sigma_{Z}^{2}\right)-1\right)$, with $G \sim \mathcal{N}(0,1), \sigma_{X}=0.24, \sigma_{Y}=0.28, \sigma_{Z}=0.32$.
- Payoff : $c(x, y, z)=\left(z-\frac{x+y}{2}\right)^{+}$, Black-Scholes price ≈ 0.0681.
- lower bound : 0.0303, upper bound 0.0856 obtained with $\left(\hat{\mu}_{25}, \hat{\nu}_{25}, \hat{\eta}_{25}\right)\left(\operatorname{Baker}\left(\left(\tilde{\mu}_{2500}\right)_{\underline{\mathcal{P}}\left(\left(\tilde{\nu}_{2500}\right)_{\mathcal{P}\left(\tilde{\eta}_{2500}\right)}^{2}\right)},\left(\tilde{\nu}_{2500}\right)_{\underline{\mathcal{P}}\left(\tilde{\eta}_{2500}\right)}^{2}, \tilde{\eta}_{2500}\right)\right)$.
- Minimisation/maximisation of

$$
\begin{gathered}
\sum_{i=1}^{\prime} p_{i} \sum_{j=1}^{J} \sum_{k=1}^{K} r_{i j k} c\left(x_{i}, y_{j}, z_{k}\right) \text { under the constraints } \\
\forall i, j, k, r_{i j k} \geq 0, \forall i, \sum_{j=1}^{J} \sum_{k=1}^{K} r_{i j k}=1, \forall j, \sum_{i=1}^{\prime} p_{i} \sum_{k=1}^{K} r_{i j k}=q_{j}, \forall k, \sum_{i=1}^{\prime} p_{i} \sum_{j=1}^{J} r_{i j k}=s_{k}, \\
\forall i, \sum_{j=1}^{J} \sum_{k=1}^{K} r_{i j k}\left(y_{j}-x_{i}\right)=0, \forall i, j, \sum_{k=1}^{K} r_{i j k}\left(z_{k}-y_{j}\right)=0 .
\end{gathered}
$$

MOT for $\left(\hat{\mu}_{25}, \hat{\nu}_{25}, \hat{\eta}_{25}\right)$ minimisation

Conclusion

- The methods that we have presented, enable to calculate with a MC method at the same time option prices, and their bounds on all other models sharing the same marginal laws.
- The accuracy of the price bounds (maybe not so important in practice) is limited by the dimension of the linear programming problem.
- Possible directions to overcome this limitation : entropic regularization and iterated Bregman projection (Benamou, Carlier, Cuturi, Nenna, 2015 in the OT case), relaxation of the martingale constraints and dual formulation (preprint of Guo and Obloj 2017).

