Sampling rare trajectories via sequential Monte Carlo in reverse time

Jere Koskela,
Dario Spanò, & Paul A Jenkins

MCQMC 2018, Rennes, France, 03.07.2018
Outline

The rare trajectory problem

Sequential Monte Carlo

A generic reverse time proposal distribution

The asynchronous transfer mode network

Containment of a hyperbolic diffusion
The rare trajectory problem

- Canonical Markov chain

\[
\left(\Omega := \prod_{i=0}^{\infty} \Omega_i, \mathcal{F} := \bigotimes_{i=0}^{\infty} \mathcal{F}_i, \{X_i\}_{i=0}^{\infty}, \mathbb{P}_\mu \right).
\]

- \(\mathbb{P}_\mu(x_0:n) := \mu(x_0) \prod_{i=1}^{n} p(x_{i-1}, x_i). \)

- Large initial set \(I \subset \Omega \) with large \(\mathbb{P}_\mu \)-probability and \(\mu(I) = 1. \)

- Target set \(T \subset \Omega. \)

- Quantity of interest \(f : \left(\prod_{i=0}^{T,T} \Omega_i \right) \mapsto \mathbb{R} \) which takes non-negligible values in a small, rare subset of \(T \) under the law of (1).

- A reaction coordinate is crucial to the success of most current methods.
Sequential Monte Carlo

- Target density: \(\pi(X_{0:n}) = \mu(X_0) \prod_{i=1}^n p(X_{i-1}, X_i) \).
- Proposal densities: \(q(X_0) \) and \(q(X_{i-1}, X_i) \).
- At time \(i = 0 \):
 1. Sample \(X_{0}^{(j)} \sim q(\cdot) \) for \(j \in [N] \).
 2. Set \(w_j \leftarrow \mu(X_{0}^{(j)}) / q(X_{0}^{(j)}) \) for \(j \in [N] \).
- For times \(i \in [n] \):
 1. Sample \(a_j \sim \text{Categorical}(w_{1:N}) \) for \(j \in [N] \).
 2. Sample \(X_{i}^{(j)} \sim q(X_{i-1}^{(a_j)}, \cdot) \) for \(j \in [N] \).
 3. Set \(w_j \leftarrow p(X_{i-1}^{(a_j)}, X_{i}^{(j)}) / q(X_{i-1}^{(a_j)}, X_{i}^{(j)}) \).

\[\mathbb{E}_\pi[f(X_{0:n})] \approx \sum_{j=1}^N \frac{w_j f(X_{0:n}^{(j)})}{\sum_{j=1}^N w_j} \].
Reverse time sequential Monte Carlo

- Target density: $\pi(X_{0:n}) = \mu(X_0) \prod_{i=1}^{n} p(X_{i-1}, X_i)$.
- Proposal densities: $q(X_n)$ and $q(X_i, X_{i-1})$.
- At time $i = n$:
 1. Sample $X_n^{(j)} \sim q(\cdot)$ for $j \in [N]$.
 2. Set $w_j \leftarrow 1/q(X_n^{(j)})$ for $j \in [N]$.
- For times $i \in \{n, \ldots, 1\}$:
 1. Sample $a_j \sim \text{Categorical}(w_{1:N})$ for $j \in [N]$.
 2. Sample $X_{i-1}^{(j)} \sim q(X_i^{(a_j)}, \cdot)$ for $j \in [N]$.
 3. Set $w_j \leftarrow p(X_{i-1}^{(a_j)}, X_i^{(j)})/q(X_i^{(a_j)}, X_{i-1}^{(j)})$.
- Set $w_j \leftarrow w_j \mu(X_0^{(j)})$ for $j \in [N]$.
- $\mathbb{E}_\pi[f(X_{0:n})] \approx \sum_{j=1}^{N} \frac{w_j f(X_{0:n}^{(j)})}{\sum_{j=1}^{N} w_j}$.
Reverse time proposals

- Reverse time dynamics can be characterised via Nagasawa’s formula:
 \[\tilde{p}(x, y) = \frac{G(\mu, y)}{G(\mu, x)} p(y, x), \]

 where
 \[G(\mu, x) = \mathbb{E}_{\pi} \left[\sum_{i=0}^{\tau_T} \mathbb{1}_{\{x\}}(X_i) \right] \]

 is the occupation measure.

- Nagasawa’s formula generalises detailed balance to chains without stationary distributions.

- \(G(\mu, x) \) is typically at least as hard to compute as \(\mathbb{E}_{\pi}[f] \).
Proposition 1

Consider a transition from \(x_{i-1} = \{z, y\} \) to \(x_i = \{z', y\} \). Suppose that the conditional sampling distribution

\[
\pi(z|y) := \mathbb{P}_{\mu}(Z_i = z|Y_i = y)
\]

is conditionally independent of \(i \). Then

\[
\frac{G(\mu, \{z', y\})}{G(\mu, \{z, y\})} = \frac{\pi(z'|y)}{\pi(z|y)}.
\]

- \(\pi(z|y) \) is of the same dimension as \(z \), i.e. lower than \(\{z, y\} \).
- The conditional time homogeneity assumption of Proposition 1 is fairly weak.
- It is possible to use the RHS to define a proposal even when Proposition 1 fails.
Asynchronous transfer mode network

- m on-off sources, each on-source generates packets at rate λ.
- Packets are served FIFO by a common server at rate μ.
- Off-sources turn on at rate α_0, on-sources turn off at rate α_1.
- State: $\{i, j\} \in \mathbb{N}_0 \times [m]$.
- Quantity of interest: probability of an initially empty queue hitting level b before emptying again, with exactly k on-sources at the hitting time.
- Initial law:

$$
\mu(\{0, j\}) = \binom{m}{j} \left(\frac{\alpha_0}{\alpha_0 + \alpha_1} \right)^j \left(\frac{\alpha_1}{\alpha_0 + \alpha_1} \right)^{n-j}.
$$
Asynchronous transfer mode network

- Initial set $I = \bigcup_{j=0}^{m} \{(0, j)\}$.
- Terminal set $T = I \cup \left(\bigcup_{j=0}^{m} \{(b, j)\} \right)$.
- Quantity of interest $f(i, j) := 1_{\{(b, k)\}}(i, j)$.
The ATM network proposal

- Single transitions only change either i or j, not both.
- \Rightarrow Only need approximate CSDs $\hat{\pi}_i(i|j)$ and $\hat{\pi}_j(j|i)$
- Subsequent results use

$$
\hat{\pi}_i(i|j) \propto \left(\frac{\lambda \max\{j, 1\}}{\mu} \right)^i,
$$

$$
\hat{\pi}_j(j|i) \propto \hat{\pi}_i(i|j) \binom{m}{j} \left(\frac{\alpha_0}{\alpha_0 + \alpha_1} \right)^j \left(\frac{\alpha_1}{\alpha_0 + \alpha_1} \right)^{m-j}.
$$
Figure: Simulated hitting probabilities using reverse time SMC (left) and adaptive multilevel splitting (right) with parameters $m = 20$, $b = 10$, $\lambda = 0.5$, $\mu = 10.0$, $\alpha_0 = 1.0$, $\alpha_1 = 3.0$. Run times are comparable at 130 seconds per replicate each.
Figure: Simulated hitting probabilities using reverse time SMC with parameters $m = 20$, $b = 30$, $\lambda = 0.5$, $\mu = 10.0$, $\alpha_0 = 1.0$, $\alpha_1 = 3.0$, and 10 000 particles. The run time was 13 minutes per replicate.
The hyperbolic diffusion

The hyperbolic diffusion solves

\[dX_t = \frac{-X_t}{\sqrt{1 + X_t^2}} \, dt + dW_t. \]

Stationary density \(\pi(x) \propto e^{-\sqrt{1+x^2}}. \)

Intractable transition density.

Euler discretisation:

\[
P_\Delta((m, x), (n, y)) = \frac{\delta_{m+\Delta(n)}}{\sqrt{2\pi\Delta}} \exp \left(-\frac{1}{2\Delta} \left[y - x \left\{ 1 - \frac{\Delta}{\sqrt{1+x^2}} \right\} \right]^2 \right).
\]
The hyperbolic diffusion

Interested in a stationary trajectory initially in \((l_0, u_0)\) at time 0, hitting \((l_t, u_t)\) at time \(t\), and remaining contained in the linearly interpolated strip:

\[
I = \{0\} \times (l_0, u_0),
\]

\[
T = \bigcup_{s \in (0, t]} \left(\{s\} \times \left\{ \frac{l_t - l_0}{t} s + l_0, \frac{u_t - u_0}{t} s + u_0 \right\} \right),
\]

\[
f(X_0: \tau_T) = 1_{\{t\}}(\tau_T),
\]

\[
\mu = \pi \mid_{(l_0, u_0)},
\]

\[
G(\mu, x) = \pi(x).
\]
Hyperbolic diffusion results

Figure: (Left) 100 replicates of simulated containment probabilities with \((l_0, u_0) = (-1, 1), t = 2,\) and \((l_t, u_t) = (5, 5.1)\). (Right) Containment probabilities with various terminal conditions.
Summary

- Aim: Sample trajectories from a large, common initial set I until the first hitting time of a target set T.
- We are interested in $\mathbb{E}_\pi[f]$, where f charges the whole trajectory but takes non-negligible values in a small, rare subset of T.
- Forwards-in-time proposals often make opposite assumptions: I is a singleton and the effective support of f may be large.
- The ingredients $\hat{\pi}(\cdot|\cdot)$ and $p(x,y)$ only require local information, not the conditional law given the rare event.
- Multilevel splitting and forwards-in-time SMC need global reaction coordinates, or approximations of the conditional target dynamics given the rare event.
- The CSD $\hat{\pi}(\cdot|\cdot)$ is lower dimensional than the process of interest, which helps with design.
References

V Anantharam, P Heidelberg, & P Tsoucas.
Analysis of rare events in continuous time Markov chains via time reversal and fluid approximation.
IBM Research Report, #RC 16280, 1990.

F Cérou, P Del Moral, T Furon, & A Guyader.
Sequential Monte Carlo for rare event estimation.

M R Frater, R A Kennedy, & B D O Anderson.
Reverse-time modelling, optimal control and large deviations.

M R Frater, R R Bitmean, R A Kennedy, & B D O Anderson.
Fast simulation of rare events using reverse-time models.

C Jarzynski.
Rare events and the convergence of exponentially averaged work values.

J Koskela, D Spanò, & P A Jenkins.
Inference and rare event simulation for stopped Markov processes via reverse-time sequential Monte Carlo.

A Shwartz & A Weiss
Induced rare events: analysis via large deviations and time reversal.