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Evaluating Risk

e Bl NS

Fukushima Daiichi Nuclear Power Plant, 2011 (Photo: Tepco)

@ Complex stochastic system operating in uncertain environment.
e Financial markets
o Critical infrastructure

@ Model's complexity makes it analytically intractable.

@ Use (quasi) Monte Carlo simulation to evaluate risk.

@ Risk often measured with quantile.
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density f(y)

CDF F(y)

I

X = p-quantile X = p-quantile
e Simulation model outputs random variable (RV) Y.
o Can't evaluate CDF F nor density f of Y.
e For 0 < p < 1, the p-quantile of F (or Y) is

¢=Flp)=inf{y: F(y) > p}

o Median is the 0.5-quantile.
e p-quantile also called 100pth percentile.

@ Quantiles often used to measure risk.
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Application: Value-at-Risk (VaR)

density f(y)

CDF F(y)

| y

X = p-quantile X = p-quantile

In finance, quantile called value-at-risk (VaR).
Stochastic model of loss of portfolio.
Y = Loss of portfolio over time horizon, e.g., two weeks.

Basel Il Accord

o Capital requirements specified in terms of 0.99-quantile of Y.
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Application: Nuclear Power Plants

Springfield Nuclear Power Plant (Image: The Simpsons)

e Probabilistic safety assessment (PSA) using simulation
o Computationally expensive
@ Y = peak cladding temperature during hypothesized accident
@ "95/95 criterion” of Nuclear Regulatory Commission (NRC).
e 95% confidence that 0.95-quantile < mandated fixed capacity.
o Need confidence interval (Cl) for quantile.
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Variance-Reduction Techniques (VRTs) for Quantile Estimation

e Simple random sampling (SRS) estimator of p-quantile £ may have
large sampling error.
o Especially when p~0or p~ 1.
@ VRTs for quantile estimation.
e Importance sampling (IS): Glynn (1996), Glasserman et al. (2000), Sun
& Hong (2010), Chu & N. (2012)
o Control variates (CV): Hsu & Nelson (1990), Hesterberg & Nelson
(1998), Chu & N. (2012)
o Antithetic variates (AV): Chu & N. (2012)
e Conditional Monte Carlo (CMC): N. (2014), Asmussen (2018)
e Latin hypercube sampling (LHS): Avramidis & Wilson (1998), Jin et
al. (2003), Dong & N. (2017a)

@ General approach
© Use VRT to estimate CDF F.
@ Invert CDF estimator to obtain estimator of quantile £ = F~1(p).
@ This talk combines CMC+LHS to estimate quantile
[Dong & N. (2017b,2018)].

Dong (Amazon) & Nakayama (NJIT) Quantile Estimation via CMC and LHS MCQMC 2018 8/41



Mathematical Framework

@ Goal: use simulation to estimate p-quantile £ of CDF F

Assumptions

Q@ YV =cy(U,Us,...,Uq) ~ F

e cy RIS R
o U, Uy, ..., Uy iid. unif[0,1)

Q (&) = F'(&) exists and f(£) > 0.

@ Next review simple random sampling (SRS) [Serfling (1980)].
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Quantile Estimation via Simple Random Sampling (SRS)

o Generate n x d i.i.d. unif[0,1) RVs U, :

Yi = cy(Uyg, Uip, ..., U1g) ~ F
Yo = cy(Uog, Uoo, ..., Uag) ~ F

Yn == Cy(Un71, Un,27~~;Un,d) ~ F

@ SRS estimator of CDF F(y) = P(Y <y)=E[I(Y <y)]is

Fay) = 2D I < ),
i=1

@ SRS estimator of p-quantile ¢ = F~1(p) is
é\n = ﬁn_l(p) = Y[np'\:m

where Y1., < Y., < ---Y,., are order statistics.
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CLT Follows From Bahadur Representation

@ SRS CLT [Smirnov (1952)]:
Vil — €| = N0, Erg), o,

2
— djSRS

T8RS = £(¢) with 1drg = Var[I(Y < &)] = p(1 — p)
@ CLT follows from Bahadur representation
£ I:_n(g) —P :
¢ = & — ———+ R, |, R,=remainder
f(£)

o ldea: Approximate (complicated) quantile estimator
én - ’3,71(/3)
in terms of (simpler) CDF estimator
1 n
Frln) = 4 3105 <0
J:
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Bahadur Representation when using SRS

Basic idea of proof:
@ Suppose f(£) > 0, where f = F'.
@ Uniformly for x in nbhd B,(§) of &,
Fr(x) ~ Fa(€) + F(x) = F(¢)
° §A,, € B, (&) for sufficiently large n, so
p = Fa(én)
~ Fa(€) + F(&n) — F(9)
~ ﬁ,,(g) + f(&) (é,, - &) [ by Taylor approx |

@ Rearranging terms gives
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Bahadur Representation when using SRS

@ More precisely: replace ~ with = by introducing error term R,

A~

s Fa(§) — p
En = €—W

o Bahadur (1966): If £(£) > 0 and f/(x) bdd in nbhd of &,

+ Rp

R, = O(n"%**logn) as.

o Ghosh (1971): If f(&) > 0,

o CLT: Because F,(¢) = LS L I(Y; <€) with Var[I(Y < €)] = 93gs,
o o /f_n(g) —Pp
Vi lé-¢ = -va <f(§)) + VR,
=0
=N (0, 45 )
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@ Variance-Reduction Techniques (VRTs)
@ Latin Hypercube Sampling (LHS)
@ Conditional Monte Carlo (CMCQ)
@ Combining CMC+LHS
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Bahadur Representation when using VRT

@ Consider VRT estimator I:'n of F.
o Assume f(€) >0, F,(€) obeys CLT, and regularity conditions on F,,.

e Then VRT p-quantile estimator &, = F L(p) satisfies Bahadur rep.

2 ﬁn(g) — P
n — - Rn
G
where
vVnR, = 0
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Bahadur Representation when using VRT

o Consider VRT estimator F,, of F.
o Assume f(€) >0, F,(€) obeys CLT, and regularity conditions on F,,.
e Then VRT p-quantile estimator &, = F L(p) satisfies Bahadur rep.

2 ﬁn(é‘) - b
= & — R,
ST Ty Y
where
vVnR, = 0

v

Sun and Hong (2010): a.s. Bahadur rep. for importance sampling (IS)
Chu and N. (2012): weak Bahadur rep. for IS+SS, CV, AV

Dong and N. (2017a): weak Bahadur rep. for LHS

Dong and N. (2018): weak Bahadur rep. for CMC+LHS
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This Talk: Combine CMC and LHS

o This talk: quantile estimation via combination of CMC+LHS
o Avramidis & Wilson (1996) use CMC+LHS to estimate mean.

o Key insight: LHS substantially reduces variance when response is
nearly additive function of inputs.

o SRS and LHS response is indicator,

n

Funsal€) = = >0V <€),

i=1

so poor additive fit.
o CMC has smoother response, so better additive fit.
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Latin Hypercube Sampling (LHS)

e LHS: McKay, Beckman, Conover (1979).

o Efficient extension stratified sampling to high dimensions.
o Reduces variance by inducing negative correlation among responses.

o Basic idea: generate correlated sample outputs, n at a time.

o Recall: cy( Ui, Us, ..., Ug) ~ F if Uj ~ unif[0,1) i.i.d.
o Generate (Vi1, Vio,..., Viq) as d-vector of i.i.d. unif[0,1).

Yi = ov(Vai1, Vip, ..., Vig) ~ F
Yo = cy(Vor, Voo,...,Voq) ~ F
Yn = CY( Vn‘17 Vn‘27 sty V”<,d) ~ F

o Columns are independent.
@ Rows are dependent.

o Y1,Ys,...,Y, are dependent and called LHS sample of size n.
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Latin Hypercube Sampling (LHS)

@ Generate n x d independent unif RVs:

Up Up
U1 Uop
Un,l Un,2

Ui g
Us,q

Un d

)

~ unifl0, 1) iid.
~ uniff,2) iid.

~ unif[2=1,1) iid.

@ Randomly permute entries in each column independently to get

Vii Vip
Voi Voo
Vn,l Vn,2

V1,4
Vo g

Vn d

)

~ unifl0,1) i.id.
~ unif[0,1) i.id.

~ unif[0,1) i.id.

e Each row consists of d i.i.d. unif[0, 1).
o Rows dependent because entries in each column permuted.
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Latin Hypercube Sampling (LHS)

Yi = coy(Vai1, Vig, ..., Vig) ~
Yo = cy(Var, Voo, ..., Vogq) ~

Yo = cv(Vai, Voo, ..., Vhg)~F

e Each row consists of d i.i.d. unif[0, 1), so each Y; ~ F.
o Y1, Yo,..., Y, dependent because each column permuted.

1

Example

@ LHS sample of size n =8 in
dimension d = 2

o Plot (\/,'71, \/,'72), ®
i=1,2,...,n. o
@ Each coordinate stratified. 0 e
0 1
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Quantile Estimation via LHS

@ Generate LHS sample Y1, Ys,..., Y,
e Each Y~ F
o Y1, Yo, ..., Y, dependent

LHS estimator of CDF F(y) = P(Y <y) = E[I(Y < y)]is

A 1«
Fuus,n(y) = - dIYi<y).
i—1

@ LHS estimator of p-quantile £ = F~1(p) is

é\LHS,n = ’31:1{157,,([3) = Y[np]:n-

o CLT [Avramidis & Wilson (1998)]: /n [éLHs,,, - 5} = N(0, 75s),
v
LHS — f2(§)

Numerator @ZJ%HS is from CLT for CDF estimator:

V[ Fuis.o(€) = F(&)] = N(0, vPs)
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Numerator of LHS Variance

@ LHS removes variance of additive part of CDF estimator F,(€)
[Avramidis & Wilson (1998)]

° F‘LHS,,,(g) averages identically distrib. but dependent copies of response
(Y <& =1(cy(M1,..., Vi) S =AV4,...,Vy)=A

o Additive approximation using ANOVA decomp [Hoeffding (1948)] with
residual €:

d
AVi,.. V) = F(&) + Y (ELAI V- F(O) +
j=1

o Numerator 1744 of LHS quantile estimator’s asymptotic variance

Uins = Varld = vdns — S Var| E[A] V]]

o If response is nearly additive, LHS substantially reduces variance.

@ But poor additive approximation for indicator response A,
so LHS may not reduce variance much.
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Conditional Monte Carlo (CMC)

CMC: Trotter and Tukey (1954), Hammersley (1956)

@ Analytically integrate out some variability to reduce variance

F(y) = EN(Y < )] = E[ELI(Y <) X]| = E[q(X.)]

e X is auxiliary random vector

@ Assume we can compute
a(X,y) = E[I(Y <y)| X] = P(Y <y[X)
@ Variance decomposition
Var[I(Y < y)] = Var [E[I(Y < y) | X]] + E [VarlI(Y < y) | X]

> Var[E[/(Y <y) IX]] = Var[q(X,y)]
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Quantile Estimation via CMC

CMC quantile estimation [Nakayama (2014), Asmussen (2018)]

@ Generate X1,X>5,..., X, as i.i.d. copies of X.
e CMC estimator of CDF F(y) = P(Y <y) = E[q(X,y)]:

[y

Fomea(y) ==Y a(Xiy)

n<
i=1
e CMC estimator of p-quantile ¢ = F~1(p)

€emen = Foyien(p)

o Computing éCMC,n typically requires root-finding method.
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Combining CMC+LHS

@ Assume conditioning vector X satisfies
(Y,X) = C*(Ul, U2, ey Ud)
= (cy(U1, Uy, ..., Ud),cx(Ur, Uz, ..., Ugr))

o Y and X generated from same i.i.d. uniforms Uy, Us, ..., Uy.

o But X only requires the first d’ < d of the uniforms.
o Avramidis & Wilson (1996): similar assumption for estimating a mean.

@ CMC+LHS: generate dependent X's using LHS grid of unif V; ;:

X1 = cx(Vig, Vig, ..., Vaa)
Xy = cx(Vor, Voo, ..., Vo q)

Xn = CX( Vn,17 Vn,27 C) Vn,d’)

e Estimate F(y) = E[q(X,y)] and p-quantile £ = F~1(p) by

Fomosrmsn(y) = 2350 1a(Xi,y) & Eomoiins,, = /:_51\140+LHS,,,(P)
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CMC+LHS: Asymptotic Variance

o CMCHLHS CLT:

2 2
Vn [ECMC+LHs,n - 5] = N(0, ¢meotLus)s N — 0o,

2
2 - ¢CMC+LHS
TCMC+LHS = 7)(2(5)

@ Numerator w%MCJrLHS is from CLT for CDF estimator:

Vn | Femcsins a(€) — F(ﬁ)] = N(0, ¥Emc1us)
° I:_CMCJFLHSJ,(&) averages dependent copies of response

q(X. &) =q(ex(Va,..., Va), ) = A (V1,..., Vg ) = A
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CMC++LHS: Numerator of Variance

CMCHLHS removes variance of additive part of CMC response
q(X~‘£) = q(CX(Vl) RN Vd’)ug) = A/(V17 ceey Vd’) = A/

@ Additive approximation using ANOVA decomp with residual €

AV, ... V) = +Z( [A] V] F(f))—i—e’

@ Numerator ¢%M0+LHS of CMC+LHS quantile estimator’'s asymptotic
variance

¢éMC+LHs = Var[€] = ¢%Mc *27:1\/5”[5 [A,| VJH

o Additive fit for CMC+LHS much better than for LHS.
@ CMC+HLHS can reduce variance much more than LHS.
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Numerical Results

e (Y, X) bivariate normal

o Y=X0,071U;) ~ F = N(0,d) for d =30

e X = Z}il @~1(U;), so correlation p(Y,X) = +/d’/d.
o Estimated p-quantile ¢ = F~1(p) via SRS, LHS, CMC, CMC+LHS.
@ Sample size n = 1600, 10* indep experiments A A
@ Variance-reduction factor of method x: VRF = Var[¢srs, n]/Var[éx, )

d'=5 (p=0.41)

d'=20 (p=0.82
10* 10* © )
VRF = I L Hs I L HS
17001 [| | [ cmC [ cme
[ JCMC+LHS [ JCMC+LHS
L T
L 10 L 10
p=0.5 p=0.8 p=0.95 p=0.5 p=0.8 p=0.95
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© Confidence Intervals (Cls) for Quantile with VRTs
@ Batching Cl for Quantile
@ Sectioning Cl for Quantile
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VRT Confidence Interval (Cl) for Quantile

@ For SRS, can build Cl for & by exploiting binomial property of

n

nFa(§) =Y _1(Y; <€)

j=t

o With VRT, binomial property no longer holds.

@ For VRT, can build Cl for £ by consistently estimating CLT's
asymptotic variance:

Jn [én . g} = N(0,72), n— oo,

2 _ V(9
()

o Nontrivial to develop consistent estimator of 72.

o Instead examine methods that avoid consistently estimating 72.
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VRT Batching Confidence Interval for Quantile

@ Use VRT to generate b > 2 i.i.d. batches, each with m outputs.
o Total outputs n = bm.

noutputs: 1,....m, m+1,....2m, ..., (b—1)m+1,...,bm
—_—— —m——
Batch 1 Batch 2 Batch b
b quantile ~ by .Y v
estimates: §1 = Fl_l(P) S = Fz_l(P) b= Ft;l(P)
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VRT Batching Confidence Interval for Quantile

@ Use VRT to generate b > 2 i.i.d. batches, each with m outputs.
o Total outputs n = bm.

noutputs: 1,....m, m+1,....2m, ..., (b—1)m+1,...,bm
—— N———
Batch 1 Batch 2 Batch b
b quantile ~ by .Y v
estimates: §1 = Fl_l(P) S = Fz_l(P) b= Ft;l(P)
@ Batching CI

- S
Cloym = <§b,m + Tbl,a\/E)

e batching point estimator 5b,m = % Jz_;l 5,

2
. b [z =
o sample variance §? = 337 37 (fj —&bm

e Tp—1,4 = (1 — «/2)-critical point of t-distn with b — 1 d.f.
@ Problem: CI centered at Eb,m, which has large bias (m < n).
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VRT Sectioning Cl Centered at Overall Quantile Estimator

@ Asmussen & Glynn (2007) develop sectioning for SRS.

@ In batching Cl, replace batching point estimator Ebm = %Zj?:l EJ
with overall point estimator £, = F.1(p)

° fn less biased than §_b,m since n = bm and b > 2

Dong (Amazon) & Nakayama (NJIT) Quantile Estimation via CMC and LHS MCQMC 2018 31/41



VRT Sectioning Cl Centered at Overall Quantile Estimator

@ Asmussen & Glynn (2007) develop sectioning for SRS.

@ In batching Cl, replace batching point estimator Eb,m = %Zj?:l fj
with overall point estimator £, = F.1(p)

° f,, less biased than Eb,m since n = bm and b > 2

@ Sectioning Cl:

—~ A S
Clom = (fn + Tbl,a\/5>

Theorem (N. (2014), Dong & N. (2014,2017a,2018))

Suppose batches indep and VRT Bahadur rep holds. Then for any fixed #
of batches b > 2 and Cp p, = Clp y or Clp m,

coverage P(é € Cppy) = 1—a as m— oo.
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Why Can Overall Estimator Replace Batching Estimator?

@ By Bahadur representation

Batch J: fj—f—ﬁ(f()g)_p-FRj,ma VMR m =0
PP g Vn R, =0,

Overall: Ey=¢— Tf)_
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Why Can Overall Estimator Replace Batching Estimator?

@ By Bahadur representation

Batch j: & =¢— Ff(f()g)_ P Rim  VmRm=0.
Overall: énzg—F”(f()f)_erRn, ViR, =0,

@ Batching point estimator satisfies

z 1, 1 F&)-p
fb,m = E;gj = bjz_;<§_ Jf_—T‘i'RLm

1vbh F
s Fi&) | —p b
b Luj=1"J 1
= g - + - R',m
© b2~
_e- Fal8) |- p n lzb R. avg of avgs
N f(€) b = Jom = overall avg

@ So/m {é,, — Eb,m} =/m [Rn - %Zfﬂ ij} = 0 as batch size m — oc.
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@ Numerical Results
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Numerical Results: Probabilistic Safety Assessment (PSA)

@ PSA of station blackout (SBO) at nuclear power plant (NPP)
o Stylized model inspired by Nutt & Wallis (2004), Sherry et al. (2013)
Peak cladding temperature (PCT) during hypothesized SBO

Risk-informed safety-margin characterization (RISMC)
Random load L ~ G,

Random capacity C ~ G¢

L and C independent [Sherry et al. (2013)]

System fails when L > C

o Equivalently, when safety margin Y =C —L <0

@ NPP deemed “acceptably safe” if = P(L > C) < 6y = 0.05
o Equivalently, when 6p-quantile £ of Y ~ F satisfies £ > 0.

@ Goal: construct 95% lower confidence bound (LCB) for £
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Numerical Results: NPP PSA

Initiating Intermediate Events Scenario
Event E; Ep Es
0.919 !
0.9981 3
sBo  [0.99938 8.1E-2
1.9E-3 4
6.2E-4 2

Event tree from Sherry et al. (2013)

o Load CDF Gy (x) = P(L < x) =Yt 1 AsP(Lis) < X)
@ For each scenario s =1,2,3,4,

o Lognormal load L = exp(Z}g1 Xsj), with X j ~ N(ps j, 02 ;)

@ Scenario s occurs with prob. A5, e.g., A1y = 0.99938 x 0.9981 x 0.919
e Capacity CDF G¢ is Tria(1800,2200,2600) [Sherry et al. (2013)]

o G¢ does not depend on scenario
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Numerical Results: NPP PSA

Initiating Intermediate Events Scenario
Event = Ez Es
0.919 !
0.9981 3
sBo  [0.99938 8.1E-2
4
1.9E-3
6.2E-4 2

e Apply SRS, CMC, LHS, CMC+LHS to build LCB for & = F~1(fy).
o CMC: L indep of C ~ G¢, so write CDF Fof Y =C — L as

Fly)=P(C<L+y)=E[P(C<L+y|L)]=E[Gc(L+y)]

o CMC estimator of F(y) averages copies of G¢c(L + y) with L ~ G
@ Also, sometimes combine with stratified sampling (SS):

F(y)=P(C—L<y)=3% AoFis(¥)
where F<5>(y) = P(C — L<5> S y)
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Numerical Results: Variance-Reduction Factor (wrt SRS)

VRF without LHS

10°

102,

VRF

101 L
1.9 2.2

1,0
SRS cMC ss SS+CMC

10°

VRF with LHS

720 0
1290

10°

L 102F
1
>

101 L

22
LHS CMC+LHS SS+LHS SS+CMC+LHS
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Sectioning Can Improve Coverage

SS+LHS (b=10)

1
"'""""""':H‘HH-’—_--_--
0.9 - |
| g™ ]
%0.8
o
o 0.7 1
3
© 0.6 - )
== Sectioning
0.5 === Batching .
===:nominal 0.95
103 10*
n

@ 95% lower confidence bound: sectioning outperforms batching
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© Concluding Remarks
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@ Quantile estimation using combination of conditional Monte Carlo
and Latin hypercube sampling.

@ Combination CMC+LHS outperforms each by itself.
@ Synergism when combining CMC and LHS.

o LHS removes variance from additive part of response.
o Additive fit for CMC much better than for SRS.
o CMCHLHS can greatly reduce variance.

@ Constructed asymptotically valid confidence intervals for quantile
using batching and sectioning.

@ Current work: QMC and RQMC for constructing batching and
sectioning Cls for quantile

Thank you!
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