Quantile Estimation via a Combination of Conditional Monte Carlo and Latin Hypercube Sampling

Hui Dong¹ and Marvin K. Nakayama²

¹Amazon.com Corp. LLC ²New Jersey Institute of Technology

Work supported in part by NSF Grant CMMI-1537322.

2018 MCQMC Conference

Table of contents

- Introduction
 - Motivation
 - Mathematical Framework
 - Review: Quantile Estimation with Simple Random Sampling
 - Bahadur Representation
- Variance-Reduction Techniques (VRTs)
 - Latin Hypercube Sampling (LHS)
 - Conditional Monte Carlo (CMC)
 - Combining CMC+LHS
- 3 Confidence Intervals (CIs) for Quantile with VRTs
 - Batching CI for Quantile
 - Sectioning CI for Quantile
- Mumerical Results
- **5** Concluding Remarks

- Introduction
 - Motivation
 - Mathematical Framework
 - Review: Quantile Estimation with Simple Random Sampling
 - Bahadur Representation
- 2 Variance-Reduction Techniques (VRTs)
- 3 Confidence Intervals (CIs) for Quantile with VRTs
- 4 Numerical Results
- **5** Concluding Remarks

Evaluating Risk

Fukushima Daiichi Nuclear Power Plant, 2011 (Photo: Tepco)

- Complex stochastic system operating in uncertain environment.
 - Financial markets
 - Critical infrastructure
- Model's complexity makes it analytically intractable.
- Use (quasi) Monte Carlo simulation to evaluate risk.
- Risk often measured with quantile.

Quantiles

- Simulation model outputs random variable (RV) Y.
 - Can't evaluate CDF F nor density f of Y.
- For 0 , the*p*-quantile of <math>F (or Y) is

$$\xi = F^{-1}(p) \equiv \inf\{y : F(y) \ge p\}$$

- Median is the 0.5-quantile.
- p-quantile also called 100pth percentile.
- Quantiles often used to measure risk.

Application: Value-at-Risk (VaR)

- In finance, quantile called value-at-risk (VaR).
- Stochastic model of loss of portfolio.
- Y = Loss of portfolio over time horizon, e.g., two weeks.
- Basel II Accord
 - Capital requirements specified in terms of 0.99-quantile of Y.

Application: Nuclear Power Plants

Springfield Nuclear Power Plant (Image: The Simpsons)

- Probabilistic safety assessment (PSA) using simulation
 - Computationally expensive
- Y = peak cladding temperature during hypothesized accident
- "95/95 criterion" of Nuclear Regulatory Commission (NRC).
 - 95% confidence that 0.95-quantile ≤ mandated fixed capacity.
- Need confidence interval (CI) for quantile.

Variance-Reduction Techniques (VRTs) for Quantile Estimation

- Simple random sampling (SRS) estimator of p-quantile ξ may have large sampling error.
 - Especially when $p \approx 0$ or $p \approx 1$.
- VRTs for quantile estimation.
 - Importance sampling (IS): Glynn (1996), Glasserman et al. (2000), Sun & Hong (2010), Chu & N. (2012)
 - Control variates (CV): Hsu & Nelson (1990), Hesterberg & Nelson (1998), Chu & N. (2012)
 - Antithetic variates (AV): Chu & N. (2012)
 - Conditional Monte Carlo (CMC): N. (2014), Asmussen (2018)
 - Latin hypercube sampling (LHS): Avramidis & Wilson (1998), Jin et al. (2003), Dong & N. (2017a)
- General approach
 - Use VRT to estimate CDF F.
 - ② Invert CDF estimator to obtain estimator of quantile $\xi = F^{-1}(p)$.
- This talk combines CMC+LHS to estimate quantile [Dong & N. (2017b,2018)].

Mathematical Framework

• Goal: use simulation to estimate p-quantile ξ of CDF F

Assumptions

- - $c_Y: \Re^d \to \Re$
 - U_1, U_2, \dots, U_d i.i.d. unif[0, 1)
- 2 $f(\xi) \equiv F'(\xi)$ exists and $f(\xi) > 0$.
 - Next review simple random sampling (SRS) [Serfling (1980)].

Quantile Estimation via Simple Random Sampling (SRS)

• Generate $n \times d$ i.i.d. unif[0,1) RVs $U_{i,j}$:

• SRS estimator of CDF $F(y) = P(Y \le y) = E[I(Y \le y)]$ is

$$\hat{F}_n(y) = \frac{1}{n} \sum_{i=1}^n I(Y_i \le y).$$

• SRS estimator of *p*-quantile $\xi = F^{-1}(p)$ is

$$\hat{\xi}_n = \hat{F}_n^{-1}(p) = Y_{\lceil nn \rceil \cdot n},$$

where $Y_{1:n} \leq Y_{2:n} \leq \cdots Y_{n:n}$ are order statistics.

CLT Follows From Bahadur Representation

• SRS CLT [Smirnov (1952)]:

$$\sqrt{n}\left[\hat{\xi}_n - \xi\right] \Rightarrow N(0, au_{ ext{SRS}}^2), \quad n \to \infty,$$

$$au_{ ext{SRS}}^2 = rac{\psi_{ ext{SRS}}^2}{f^2(\xi)} \quad \text{with} \quad \psi_{ ext{SRS}}^2 = ext{Var}[I(Y \le \xi)] = p(1-p)$$

CLT follows from Bahadur representation

$$\hat{\xi}_n = \xi - \frac{\hat{F}_n(\xi) - p}{f(\xi)} + R_n$$
, $R_n = \text{remainder}$

Idea: Approximate (complicated) quantile estimator

$$\hat{\xi}_n = \hat{F}_n^{-1}(p)$$

in terms of (simpler) CDF estimator

$$\hat{F}_n(y) = \frac{1}{n} \sum_{i=1}^n I(Y_i \le y)$$

Bahadur Representation when using SRS

Basic idea of proof:

- Suppose $f(\xi) > 0$, where f = F'.
- Uniformly for x in nbhd $B_n(\xi)$ of ξ ,

$$\hat{F}_n(x) \approx \hat{F}_n(\xi) + F(x) - F(\xi)$$

• $\hat{\xi}_n \in B_n(\xi)$ for sufficiently large n, so

$$p \approx \hat{F}_n(\hat{\xi}_n)$$

 $\approx \hat{F}_n(\xi) + F(\hat{\xi}_n) - F(\xi)$
 $\approx \hat{F}_n(\xi) + f(\xi)(\hat{\xi}_n - \xi)$ [by Taylor approx]

Rearranging terms gives

$$\hat{\xi}_n \approx \xi - \frac{\hat{F}_n(\xi) - p}{f(\xi)}$$

Bahadur Representation when using SRS

• More precisely: replace \approx with = by introducing error term R_n

$$\hat{\xi}_n = \xi - \frac{\hat{F}_n(\xi) - p}{f(\xi)} + R_n$$

• Bahadur (1966): If $f(\xi) > 0$ and f'(x) bdd in nbhd of ξ ,

$$R_n = O(n^{-3/4} \log n) \text{ a.s.}$$

• Ghosh (1971): If $f(\xi) > 0$,

$$\sqrt{n} R_n \Rightarrow 0$$

• CLT: Because $\hat{F}_n(\xi) = \frac{1}{n} \sum_{i=1}^n I(Y_i \leq \xi)$ with $\text{Var}[I(Y \leq \xi)] = \psi_{SRS}^2$,

$$\sqrt{n} \left[\hat{\xi}_n - \xi \right] = \underbrace{-\sqrt{n} \left(\frac{\hat{F}_n(\xi) - p}{f(\xi)} \right)}_{\Rightarrow N \left(0, \frac{\psi_{\text{SRS}}^2}{f^2(\xi)} \right)} + \underbrace{\sqrt{n} R_n}_{\Rightarrow 0}$$

- Introduction
- 2 Variance-Reduction Techniques (VRTs)
 - Latin Hypercube Sampling (LHS)
 - Conditional Monte Carlo (CMC)
 - Combining CMC+LHS
- 3 Confidence Intervals (CIs) for Quantile with VRTs
- Mumerical Results
- **5** Concluding Remarks

Bahadur Representation when using VRT

Theorem

- Consider VRT estimator \hat{F}_n of F.
- Assume $f(\xi) > 0$, $\hat{F}_n(\xi)$ obeys CLT, and regularity conditions on \hat{F}_n .
- Then VRT p-quantile estimator $\hat{\xi}_n = \hat{F}_n^{-1}(p)$ satisfies Bahadur rep.

$$\hat{\xi}_n = \xi - \frac{\hat{F}_n(\xi) - p}{f(\xi)} + R_n$$

where

$$\sqrt{n} R_n \Rightarrow 0$$

Bahadur Representation when using VRT

Theorem

- Consider VRT estimator \hat{F}_n of F.
- Assume $f(\xi) > 0$, $\hat{F}_n(\xi)$ obeys CLT, and regularity conditions on \hat{F}_n .
- Then VRT p-quantile estimator $\hat{\xi}_n = \hat{F}_n^{-1}(p)$ satisfies Bahadur rep.

$$\hat{\xi}_n = \xi - \frac{\hat{F}_n(\xi) - p}{f(\xi)} + R_n$$

where

$$\sqrt{n} R_n \Rightarrow 0$$

- Sun and Hong (2010): a.s. Bahadur rep. for importance sampling (IS)
- Chu and N. (2012): weak Bahadur rep. for IS+SS, CV, AV
- Dong and N. (2017a): weak Bahadur rep. for LHS
- Dong and N. (2018): weak Bahadur rep. for CMC+LHS

This Talk: Combine CMC and LHS

- This talk: quantile estimation via combination of CMC+LHS
 - Avramidis & Wilson (1996) use CMC+LHS to estimate mean.
- **Key insight:** LHS substantially reduces variance when response is nearly additive function of inputs.
 - SRS and LHS response is indicator,

$$\hat{F}_{\mathrm{LHS},n}(\xi) = \frac{1}{n} \sum_{i=1}^{n} I(Y_i \le \xi),$$

so poor additive fit.

• CMC has smoother response, so better additive fit.

Latin Hypercube Sampling (LHS)

- LHS: McKay, Beckman, Conover (1979).
 - Efficient extension stratified sampling to high dimensions.
 - Reduces variance by inducing negative correlation among responses.
- Basic idea: generate correlated sample outputs, n at a time.

 - Recall: $c_Y(U_1, U_2, ..., U_d) \sim F$ if $U_j \sim \text{unif}[0, 1)$ i.i.d. Generate $(V_{i,1}, V_{i,2}, ..., V_{i,d})$ as d-vector of i.i.d. unif[0, 1).

- Columns are independent.
- Rows are dependent.
- Y_1, Y_2, \ldots, Y_n are dependent and called LHS sample of size n.

Latin Hypercube Sampling (LHS)

• Generate $n \times d$ independent unif RVs:

Randomly permute entries in each column independently to get

- Each row consists of d i.i.d. unif[0,1).
- Rows dependent because entries in each column permuted.

Latin Hypercube Sampling (LHS)

$$Y_1 = c_Y(V_{1,1}, V_{1,2}, ..., V_{1,d}) \sim F$$

 $Y_2 = c_Y(V_{2,1}, V_{2,2}, ..., V_{2,d}) \sim F$
 \vdots
 $Y_n = c_Y(V_{n,1}, V_{n,2}, ..., V_{n,d}) \sim F$

- Each row consists of d i.i.d. unif[0,1), so each $Y_i \sim F$.
- Y_1, Y_2, \ldots, Y_n dependent because each column permuted.

Example

- LHS sample of size n = 8 in dimension d = 2
- Plot $(V_{i,1}, V_{i,2})$, $i = 1, 2, \dots, n$.
- Each coordinate stratified.

Quantile Estimation via LHS

- Generate LHS sample Y_1, Y_2, \ldots, Y_n
 - Each $Y_i \sim F$
 - Y_1, Y_2, \dots, Y_n dependent
- LHS estimator of CDF $F(y) = P(Y \le y) = E[I(Y \le y)]$ is

$$\hat{F}_{\mathrm{LHS},n}(y) = \frac{1}{n} \sum_{i=1}^{n} I(Y_i \leq y).$$

• LHS estimator of *p*-quantile $\xi = F^{-1}(p)$ is

$$\hat{\xi}_{\mathrm{LHS},n} = \hat{F}_{\mathrm{LHS},n}^{-1}(p) = Y_{\lceil np \rceil : n}.$$

• CLT [Avramidis & Wilson (1998)]: $\sqrt{n} \left[\hat{\xi}_{\mathrm{LHS},n} - \xi \right] \Rightarrow N(0, \tau_{\mathrm{LHS}}^2)$,

$$\tau_{\rm LHS}^2 = \frac{\psi_{\rm LHS}^2}{f^2(\xi)}$$

• Numerator $\psi_{\rm LHS}^2$ is from CLT for CDF estimator:

$$\sqrt{n}\left[\hat{F}_{\mathrm{LHS},n}(\xi) - F(\xi)\right] \Rightarrow N(0,\psi_{\mathrm{LHS}}^2)$$

Numerator of LHS Variance

- LHS removes variance of additive part of CDF estimator $\hat{F}_n(\xi)$ [Avramidis & Wilson (1998)]
 - ullet $\hat{F}_{\mathrm{LHS},n}(\xi)$ averages identically distrib. but dependent copies of response

$$I(Y \leq \xi) = I(c_Y(V_1, \dots, V_d) \leq \xi) \equiv A(V_1, \dots, V_d) \equiv A$$

• Additive approximation using ANOVA decomp [Hoeffding (1948)] with residual ϵ :

$$A(V_1,\ldots,V_d) = F(\xi) + \sum_{j=1}^d \left(E[A|V_j] - F(\xi) \right) + \epsilon$$

 \bullet Numerator ψ_{LHS}^2 of LHS quantile estimator's asymptotic variance

$$\psi_{\mathrm{LHS}}^{2} = \mathsf{Var}[\epsilon] = \psi_{\mathrm{SRS}}^{2} - \sum_{j=1}^{d} \mathsf{Var}\left[E\left[A \mid V_{j}\right]\right]$$

- If response is nearly additive, LHS substantially reduces variance.
- But poor additive approximation for indicator response A, so LHS may not reduce variance much.

Conditional Monte Carlo (CMC)

CMC: Trotter and Tukey (1954), Hammersley (1956)

Analytically integrate out some variability to reduce variance

$$F(y) = E[I(Y \le y)] = E[E[I(Y \le y) | X]] \equiv E[q(X, y)]$$

- X is auxiliary random vector
- Assume we can compute

$$q(\mathbf{X}, y) = E[I(Y \le y) \mid \mathbf{X}] = P(Y \le y \mid \mathbf{X})$$

Variance decomposition

$$Var[I(Y \le y)] = Var\Big[E[I(Y \le y) | X]\Big] + E\Big[Var[I(Y \le y) | X]\Big]$$
$$\ge Var\Big[E[I(Y \le y) | X]\Big] = Var[q(X, y)]$$

Quantile Estimation via CMC

CMC quantile estimation [Nakayama (2014), Asmussen (2018)]

- Generate X_1, X_2, \dots, X_n as i.i.d. copies of X.
- CMC estimator of CDF $F(y) = P(Y \le y) = E[q(X, y)]$:

$$\hat{F}_{\mathrm{CMC},n}(y) = \frac{1}{n} \sum_{i=1}^{n} q(\boldsymbol{X}_i, y)$$

• CMC estimator of *p*-quantile $\xi = F^{-1}(p)$

$$\hat{\xi}_{\mathrm{CMC},n} = \hat{F}_{\mathrm{CMC},n}^{-1}(p)$$

ullet Computing $\hat{\xi}_{\mathrm{CMC},n}$ typically requires root-finding method.

Combining CMC+LHS

ullet Assume conditioning vector $oldsymbol{X}$ satisfies

$$(Y, X) = c_*(U_1, U_2, \dots, U_d)$$

= $(c_Y(U_1, U_2, \dots, U_d), c_X(U_1, U_2, \dots, U_{d'}))$

- Y and **X** generated from same i.i.d. uniforms U_1, U_2, \ldots, U_d .
- But **X** only requires the first $d' \leq d$ of the uniforms.
- Avramidis & Wilson (1996): similar assumption for estimating a mean.
- CMC+LHS: generate dependent X's using LHS grid of unif $V_{i,j}$:

$$X_{1} = c_{X}(V_{1,1}, V_{1,2}, ..., V_{1,d'}) X_{2} = c_{X}(V_{2,1}, V_{2,2}, ..., V_{2,d'}) \vdots X_{n} = c_{X}(V_{n,1}, V_{n,2}, ..., V_{n,d'})$$

• Estimate $F(y) = E[q(\mathbf{X}, y)]$ and p-quantile $\xi = F^{-1}(p)$ by $\hat{F}_{\text{CMC+LHS},n}(y) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{X}_i, y)$ & $\hat{\xi}_{\text{CMC+LHS},n} = \hat{F}_{\text{CMC+LHS},n}^{-1}(p)$

CMC+LHS: Asymptotic Variance

• CMC+LHS CLT:

$$\begin{split} \sqrt{n} \left[\hat{\xi}_{\text{CMC+LHS},n} - \xi \right] &\Rightarrow \textit{N}(0, \tau_{\text{CMC+LHS}}^2), \quad \textit{n} \rightarrow \infty, \\ \tau_{\text{CMC+LHS}}^2 &= \frac{\psi_{\text{CMC+LHS}}^2}{f^2(\xi)} \end{split}$$

• Numerator $\psi^2_{\mathrm{CMC+LHS}}$ is from CLT for CDF estimator:

$$\sqrt{n}\left[\hat{F}_{\text{CMC+LHS},n}(\xi) - F(\xi)\right] \Rightarrow N(0, \psi_{\text{CMC+LHS}}^2)$$

• $\hat{F}_{\text{CMC+LHS},n}(\xi)$ averages dependent copies of response

$$q(\boldsymbol{X},\xi)=q(c_X(V_1,\ldots,V_{d'}),\xi)\equiv A'(V_1,\ldots,V_{d'})\equiv A'$$

CMC+LHS: Numerator of Variance

CMC+LHS removes variance of additive part of CMC response

$$q(X,\xi)=q(c_X(V_1,\ldots,V_{d'}),\xi)\equiv A'(V_1,\ldots,V_{d'})\equiv A'$$

• Additive approximation using ANOVA decomp with residual ϵ' :

$$A'(V_1,\ldots,V_{d'}) = F(\xi) + \sum_{j=1}^{d'} \left(E[A' \mid V_j] - F(\xi) \right) + \epsilon'$$

 \bullet Numerator $\psi^2_{\rm CMC+LHS}$ of CMC+LHS quantile estimator's asymptotic variance

$$\psi_{\mathrm{CMC+LHS}}^{2} = \mathsf{Var}[\epsilon'] = \psi_{\mathrm{CMC}}^{2} - \sum_{j=1}^{d} \mathsf{Var}\left[E\left[A' \mid V_{j}\right]\right]$$

- Additive fit for CMC+LHS much better than for LHS.
- CMC+LHS can reduce variance much more than LHS.

Numerical Results

- (Y,X) bivariate normal
 - $Y = \sum_{j=1}^{d} \Phi^{-1}(U_j) \sim F = N(0, d)$ for d = 30
 - $X = \sum_{j=1}^{d'} \Phi^{-1}(U_j)$, so correlation $\rho(Y, X) = \sqrt{d'/d}$.
- Estimated *p*-quantile $\xi = F^{-1}(p)$ via SRS, LHS, CMC, CMC+LHS.
- Sample size n = 1600, 10^4 indep experiments
- ullet Variance-reduction factor of method x: $\mathsf{VRF} = \mathsf{Var}[\hat{\xi}_{\mathrm{SRS},n}]/\mathsf{Var}[\hat{\xi}_{\mathrm{x},n}]$

- Introduction
- 2 Variance-Reduction Techniques (VRTs)
- 3 Confidence Intervals (CIs) for Quantile with VRTs
 - Batching CI for Quantile
 - Sectioning CI for Quantile
- Mumerical Results
- **5** Concluding Remarks

VRT Confidence Interval (CI) for Quantile

• For SRS, can build CI for ξ by exploiting binomial property of

$$n\hat{F}_n(\xi) = \sum_{j=1}^n I(Y_j \le \xi)$$

- With VRT, binomial property no longer holds.
- For VRT, can build CI for ξ by consistently estimating CLT's asymptotic variance:

$$\sqrt{n}\left[\hat{\xi}_n - \xi\right] \Rightarrow N(0, \tau^2), \quad n \to \infty,$$

$$\tau^2 = \frac{\psi^2(\xi)}{f^2(\xi)}$$

- Nontrivial to develop consistent estimator of τ^2 .
- Instead examine methods that avoid consistently estimating τ^2 .

VRT Batching Confidence Interval for Quantile

- Use VRT to generate $b \ge 2$ i.i.d. batches, each with m outputs.
- Total outputs n = bm.

$$n$$
 outputs: $\underbrace{1,\ldots,m,}_{\text{Batch 1}}$ $\underbrace{m+1,\ldots,2m,}_{\text{Batch 2}}$ $\ldots, \underbrace{(b-1)m+1,\ldots,bm}_{\text{Batch b}}$ \underbrace{b} quantile estimates: $\widetilde{\xi}_1 = \widetilde{F}_1^{-1}(p)$ $\widetilde{\xi}_2 = \widetilde{F}_2^{-1}(p)$ $\widetilde{\xi}_b = \widetilde{F}_b^{-1}(p)$

VRT Batching Confidence Interval for Quantile

- Use VRT to generate $b \ge 2$ i.i.d. batches, each with m outputs.
- Total outputs n = bm.

$$n$$
 outputs: $\underbrace{1,\ldots,m,}_{\text{Batch 1}}$ $\underbrace{m+1,\ldots,2m,}_{\text{Batch 2}}$ $\ldots, \underbrace{(b-1)m+1,\ldots,bm}_{\text{Batch }b}$ \underbrace{b} quantile estimates: $\widetilde{\xi}_1 = \widetilde{F}_1^{-1}(p)$ $\underbrace{\widetilde{\xi}}_2 = \widetilde{F}_2^{-1}(p)$ $\underbrace{\widetilde{\xi}}_b = \widetilde{F}_b^{-1}(p)$

Batching CI

$$Cl_{b,m} = \left(\bar{\xi}_{b,m} \pm \tau_{b-1,\alpha} \frac{S}{\sqrt{b}}\right)$$

- batching point estimator $ar{\xi}_{b,m} = rac{1}{n} \sum_{j=1}^b \widetilde{\xi}_j$
- sample variance $S^2 = \frac{1}{b-1} \sum_{j=1}^b \left(\tilde{\xi}_j \bar{\xi}_{b,m} \right)^2$
- $\tau_{b-1,\alpha} = (1 \alpha/2)$ -critical point of t-distn with b-1 d.f.
- Problem: CI centered at $\bar{\xi}_{b,m}$, which has large bias (m < n).

VRT Sectioning CI Centered at Overall Quantile Estimator

- Asmussen & Glynn (2007) develop sectioning for SRS.
- In batching CI, replace batching point estimator $\bar{\xi}_{b,m} = \frac{1}{b} \sum_{j=1}^{b} \tilde{\xi}_{j}$ with overall point estimator $\hat{\xi}_{n} = \hat{F}_{n}^{-1}(p)$
 - $\hat{\xi}_n$ less biased than $\bar{\xi}_{b,m}$ since n=bm and $b\geq 2$

VRT Sectioning CI Centered at Overall Quantile Estimator

- Asmussen & Glynn (2007) develop sectioning for SRS.
- In batching CI, replace batching point estimator $\bar{\xi}_{b,m} = \frac{1}{b} \sum_{j=1}^{b} \tilde{\xi}_{j}$ with overall point estimator $\hat{\xi}_{n} = \hat{F}_{n}^{-1}(p)$
 - $\hat{\xi}_n$ less biased than $\bar{\xi}_{b,m}$ since n=bm and $b\geq 2$
- Sectioning CI:

$$\widehat{CI}_{b,m} = \left(\hat{\xi}_n \pm \tau_{b-1,\alpha} \frac{\hat{\varsigma}}{\sqrt{b}}\right)$$

Theorem (N. (2014), Dong & N. (2014,2017a,2018))

Suppose batches indep and VRT Bahadur rep holds. Then for any fixed # of batches $b \ge 2$ and $C_{b,m} = CI_{b,m}$ or $\widehat{CI}_{b,m}$,

coverage
$$P(\xi \in C_{h,m}) \to 1 - \alpha$$
 as $m \to \infty$.

Why Can Overall Estimator Replace Batching Estimator?

By Bahadur representation

Batch
$$j$$
: $\tilde{\xi}_{j} = \xi - \frac{\tilde{F}_{j}(\xi) - p}{f(\xi)} + R_{j,m}, \qquad \sqrt{m} R_{j,m} \Rightarrow 0.$

Overall: $\hat{\xi}_{n} = \xi - \frac{\hat{F}_{n}(\xi) - p}{f(\xi)} + R_{n}, \qquad \sqrt{n} R_{n} \Rightarrow 0,$

Why Can Overall Estimator Replace Batching Estimator?

By Bahadur representation

Batch
$$j$$
: $\tilde{\xi}_{j} = \xi - \frac{\tilde{F}_{j}(\xi) - p}{f(\xi)} + R_{j,m}, \qquad \sqrt{m} R_{j,m} \Rightarrow 0.$

Overall: $\hat{\xi}_{n} = \xi - \frac{\hat{F}_{n}(\xi) - p}{f(\xi)} + R_{n}, \qquad \sqrt{n} R_{n} \Rightarrow 0,$

Batching point estimator satisfies

$$\bar{\xi}_{b,m} = \frac{1}{b} \sum_{j=1}^{b} \tilde{\xi}_{j} = \frac{1}{b} \sum_{j=1}^{b} \left(\xi - \frac{\tilde{F}_{j}(\xi) - p}{f(\xi)} + R_{j,m} \right)$$

$$= \xi - \frac{\frac{1}{b} \sum_{j=1}^{b} \tilde{F}_{j}(\xi) - p}{f(\xi)} + \frac{1}{b} \sum_{j=1}^{b} R_{j,m}$$

$$= \xi - \frac{\hat{F}_{n}(\xi) - p}{f(\xi)} + \frac{1}{b} \sum_{j=1}^{b} R_{j,m} \qquad \text{avg of avgs} \\
= \text{overall avg}$$

• So $\sqrt{m}\left[\hat{\xi}_{\mathbf{n}} - \bar{\xi}_{b,m}\right] = \sqrt{m}\left[R_{\mathbf{n}} - \frac{1}{b}\sum_{j=1}^{b}R_{j,m}\right] \Rightarrow 0$ as batch size $m \to \infty$.

- Introduction
- 2 Variance-Reduction Techniques (VRTs)
- 3 Confidence Intervals (CIs) for Quantile with VRTs
- **4** Numerical Results
- **5** Concluding Remarks

Numerical Results: Probabilistic Safety Assessment (PSA)

- PSA of station blackout (SBO) at nuclear power plant (NPP)
 - Stylized model inspired by Nutt & Wallis (2004), Sherry et al. (2013)
- Peak cladding temperature (PCT) during hypothesized SBO
 - Risk-informed safety-margin characterization (RISMC)
 - Random load $L \sim G_I$
 - Random capacity $C \sim G_C$
 - L and C independent [Sherry et al. (2013)]
- System fails when $L \geq C$
 - ullet Equivalently, when safety margin $Y\equiv C-L\leq 0$
- NPP deemed "acceptably safe" if $\theta = P(L \ge C) \le \theta_0 = 0.05$
 - Equivalently, when θ_0 -quantile ξ of $Y \sim F$ satisfies $\xi \geq 0$.
- Goal: construct 95% lower confidence bound (LCB) for ξ

Numerical Results: NPP PSA

Event tree from Sherry et al. (2013)

- Load CDF $G_L(x) = P(L \le x) = \sum_{s=1}^4 \lambda_{\langle s \rangle} P(L_{\langle s \rangle} \le x)$
- For each scenario s = 1, 2, 3, 4,
 - Lognormal load $L_{\langle s \rangle} = \exp(\sum_{j=1}^{10} X_{s,j})$, with $X_{s,j} \sim N(\mu_{s,j}, \sigma_{s,j}^2)$
 - Scenario *s* occurs with prob. $\lambda_{\langle s \rangle}$, e.g., $\lambda_{\langle 1 \rangle} = 0.99938 \times 0.9981 \times 0.919$
- Capacity CDF *G_C* is Tria(1800, 2200, 2600) [Sherry et al. (2013)]
 - G_C does not depend on scenario

Numerical Results: NPP PSA

Initiating Event	Interm	ediate E <i>E</i> ₂	Events E ₃	Scenario
SBO	0.99938	0.9981	0.919 8.1E-2	- 1 - 3
	6.2E-4	1.9E-3		- 4

- Apply SRS, CMC, LHS, CMC+LHS to build LCB for $\xi = F^{-1}(\theta_0)$.
- CMC: L indep of $C \sim G_C$, so write CDF F of Y = C L as

$$F(y) = P(C \le L + y) = E[P(C \le L + y \mid L)] = E[G_C(L + y)]$$

- CMC estimator of F(y) averages copies of $G_C(L+y)$ with $L \sim G_L$
- Also, sometimes combine with stratified sampling (SS):

$$F(y) = P(C - L \le y) = \sum_{s=1}^{4} \lambda_{\langle s \rangle} F_{\langle s \rangle}(y)$$
 where $F_{\langle s \rangle}(y) = P(C - L_{\langle s \rangle} \le y)$.

Numerical Results: Variance-Reduction Factor (wrt SRS)

Sectioning Can Improve Coverage

95% lower confidence bound: sectioning outperforms batching

- Introduction
- 2 Variance-Reduction Techniques (VRTs)
- 3 Confidence Intervals (CIs) for Quantile with VRTs
- Mumerical Results
- **5** Concluding Remarks

Summary

- Quantile estimation using combination of conditional Monte Carlo and Latin hypercube sampling.
- Combination CMC+LHS outperforms each by itself.
- Synergism when combining CMC and LHS.
 - LHS removes variance from additive part of response.
 - Additive fit for CMC much better than for SRS.
 - CMC+LHS can greatly reduce variance.
- Constructed asymptotically valid confidence intervals for quantile using batching and sectioning.
- Current work: QMC and RQMC for constructing batching and sectioning CIs for quantile

Thank you!

Some References

- Asmussen, S. and P. W. Glynn, (2007). Stochastic Simulation: Algorithms and Analysis, Springer.
- Avramidis, A. N. and J. R. Wilson, (1998). Correlation-Induction Techniques for Estimating Quantiles in Simulation.
 Operations Research, 46:574–591.
- Avramidis, A. N. and J. R. Wilson, (1996). Integrated Variance Reduction Strategies for Simulation. Operations Research, 44:327–346.
- Bahadur, R. R., (1966). A Note on Quantiles in Large Samples. Annals of Mathematical Statistics, 37:577–580.
- Chu, F. and M. K. Nakayama, (2012). Confidence Intervals for Quantiles When Applying Variance-Reduction Techniques. ACM Transactions On Modeling and Computer Simulation, 22:2:10:1–10:25.
- Dong, H. and M. K. Nakayama, (2014). Constructing Confidence Intervals for a Quantile Using Batching and Sectioning when Applying Latin Hypercube Sampling. Proceedings of the 2014 Winter Simulation Conference, 640–651.
- Dong, H. and M. K. Nakayama, (2017a). Quantile Estimation With Latin Hypercube Sampling. Operations Research, 65:1678–1695.
- Dong, H. and M. K. Nakayama, (2017b). Quantile Estimation using Conditional Monte Carlo and Latin Hypercube Sampling. Proceedings of the 2017 Winter Simulation Conference, 1986–1997.
- Dong, H. and M. K. Nakayama, (2018). Quantile Estimation using Stratified Sampling, Conditional Monte Carlo, and Latin Hypercube Sampling. Working draft.
- Ghosh, J. K., (1971). A New Proof of the Bahadur Representation of Quantiles and an Application. Annals of Mathematical Statistics, 42:1957–1961.
- Nakayama, M. K., (2014). Confidence Intervals for Quantiles Using Sectioning When Applying Variance-Reduction Techniques. ACM Transactions on Modeling and Computer Simulation, 24:4:19:1–19:21.
- Nakayama, M. K., (2014). Quantile Estimation When Applying Conditional Monte Carlo. SIMULTECH 2014 Proceedings, 280–285.
- Nutt, W. T. and G. B. Wallis, (2004). Evaluation of Nuclear Safety from the Outputs of Computer Codes in the Presence of Uncertainties, Reliability Engineering and System Safety, 83:57–77.
- Sherry, R. R., J. R. Gabor, and S. M. Hess, (2013). Pilot Application of Risk Informed Safety Margin Characterization
 to a Total Loss of Feedwater Event. Reliability Engineering and System Safety, 117:65–72.