Rapid covariance-based sampling for finite element approximations of linear SPDE in MLMC

Andreas Petersson
MCQMC 2018, Rennes, July 5, 2018
Introduction
Introduction to stochastic partial differential equations

Let \((\Omega, \mathcal{A}, (\mathcal{F}_t, t \geq 0), \mathbb{P})\) be a complete filtered probability space and let \(H\) be a real, separable Hilbert space. Consider the SPDE

\[
dX(t) = (AX(t) + F(t, X(t))) \, dt + G(t) \, dW(t) \quad \text{for } t \in (0, T],
\]

\[
X(0) = x_0.
\]

1. \(-A : D(-A) \to H\) densely defined, self-adjoint and positive definite operator with a compact inverse \(\implies A\) is the generator of a \(C_0\)-semigroup \(E = (E(t), t \geq 0)\)
2. \(W\) is a \(Q\)-Wiener process in \(H\)
3. \(F(t, \cdot)\) is affine linear
Main idea

- **Goal:** Efficiently estimate $\mathbb{E}[\phi(X(T))]$ for a smooth functional ϕ.

- **Method:** Sample an approximation $X_{h,\Delta t}^T$ (with, e.g., finite elements and backward Euler) many times in a Monte Carlo simulation. Expensive!

- **Idea:** Consider only equations such that $X_{h,\Delta t}^T$ is Gaussian, compute its covariance and use this for sampling rather than sampling $X_{h,\Delta t}^T$ directly.
Outline

Introduction

Theoretical framework and discretization

Monte Carlo (MC) and multilevel Monte Carlo (MLMC)

Computing covariances and cross-covariances

Computational complexity and simulation
Model example: Stochastic advection-diffusion equation

Example

- $H = L^2(D)$, convex polygonal domain $D \subset \mathbb{R}^d$, $d = 1, 2, 3$
- $A = \Delta$ with Dirichlet zero boundary conditions
- $F(t, f) = b(t, \cdot) \cdot \nabla f(\cdot)$, $b : D \times [0, T] \to \mathbb{R}^d$ is a sufficiently smooth vector field
- $G = I$

The SPDE (1) is interpreted as

$$
\begin{align*}
\mathrm{d}X(t, x) &= (\Delta X(t, x) + b(t, x) \cdot \nabla X(t, x)) \, \mathrm{d}t + \mathrm{d}W(t, x), t \in (0, T], x \in D, \\
X(t, x) &= 0, \\
X(0, x) &= x_0(x),
\end{align*}
$$

$t \in (0, T], x \in \partial D,$

$x \in D.$
Model example: The Wiener process

Example

- \(W(t) - W(s) \sim N(0, (t - s)Q) \) for a positive semidefinite trace class covariance operator \(Q \in L(H) \)
- \(\text{Tr}(Q) < \infty \implies Q^{1/2} \in L_2(H) \implies \) there exists a symmetric square integrable function \(q : D \times D \to \mathbb{R} \) such that
 \[
 Qf = \int_D q(\cdot, y)f(y) \, dy
 \]
- Similarly, a symmetric, positive semidefinite continuous function \(q \) on \(D \times D \), defines a covariance operator \(Q \).
Theoretical framework and discretization
Theoretical framework

Theoretical framework and discretization from [Kruse, 2014]:

\(X = (X(t))_{t \in [0, T]} \) is a **mild solution**, i.e., \(\sup_{t \in [0, T]} \| X(t) \|_{L^2(\Omega; H)} < \infty \)

and for all \(t \in [0, T] \),

\[
X(t) = E(t)x_0 + \int_0^t E(t-s)F(s, X(s)) \, ds + \int_0^t E(t-s)G(s) \, dW(s),
\]

\(P \)-a.s.

- \(\dot{H}^r = \text{dom}\left((-A)^{\frac{r}{2}}\right) \) Hilbert space with norm \(\| \cdot \|_r = \| A^{-\frac{r}{2}} \cdot \| \)
- For the model example, \(\dot{H}^1 = H^1_0(D) \) and \(\dot{H}^2 = H^2(D) \cap H^1_0(D) \),

where \(H^k(D) \) is the Sobolev space of order \(k \) on \(D \) and \(H^1_0(D) \) is the subset of functions that are zero on the boundary.
Spatial discretization

$(V_h)_{h \in (0,1]}$ is a family of subspaces of \dot{H}^1 equipped with the inner product of H such that $N_h = \dim(V_h) < \infty$, $h \in (0,1]$. Assume:

- $\|P_h x\|_1 \leq C \|x\|_1$ for all $h \in (0,1]$ and $x \in \dot{H}^1$
- $\|R_h x - x\| \leq C h^s \|x\|_s$ for all $h \in (0,1]$ and x in \dot{H}^s, $s \in \{0,1\}$

$-A_h : V_h \rightarrow V_h$ is defined by the relationship

$$\langle -A_h f_h, g_h \rangle = \langle f_h, g_h \rangle_1 = \left\langle \left(-A \right)^{\frac{1}{2}} f_h, \left(-A \right)^{\frac{1}{2}} g_h \right\rangle$$

for all $f_h, g_h \in V_h$.
Backward Euler method: Let a uniform time grid be given by $t_j = j \Delta t$ for $j = 0, \ldots, N_{\Delta t}$, where $N_{\Delta t} \in \mathbb{N}$ and $\Delta t = T N_{\Delta t}^{-1}$. The approximation $(X_{h,\Delta t}^{t_j})_{j=0}^{N_{\Delta t}}$ of the SPDE (1) is given by the recursion

$$X_{h,\Delta t}^{t_{j+1}} - X_{h,\Delta t}^{t_j} = \left(A_h X_{h,\Delta t}^{t_{j+1}} + P_h F(t_j, X_{h,\Delta t}^{t_j}) \right) \Delta t + P_h G(t_j) \Delta W^j,$$

where $\Delta W^j = W(t_{j+1}) - W(t_j)$ and $j = 0, \ldots, N_{\Delta t} - 1$.
Assumptions and strong convergence

Assumption 1

The parameters of the SPDE (1) fulfill:

- \(W \) is an \((\mathcal{F}_t)_{t \in [0,T]}\)-adapted \(Q \)-Wiener process with \(\text{Tr}(Q) < \infty \).
- \(\exists C > 0 \) s.t. \(G : [0, T] \to \mathcal{L}_2^0 = \mathcal{L}_2(Q^{1/2}(H), H) \) satisfies
 \[
 \|G(t_1) - G(t_2)\|_{\mathcal{L}_2^0} \leq C|t_1 - t_2|^{1/2}, \ \forall t_1, t_2 \in [0, T].
 \]
- \(F : [0, T] \times H \to \dot{H}^{-1} \) is affine in \(H \), i.e., for each \(t \in [0, T] \) there exists \(F^1_t \in \mathcal{L}(H, \dot{H}^{-1}) \) and \(F^2_t \in \dot{H}^{-1} \) s.t. \(F(t, f) = F^1_t f + F^2_t \), \(\forall f \in H \).
 Furthermore, \(\exists C > 0 \) s.t. \(F \) satisfies
 \[
 \|F(t_1, f) - F(t_2, f)\|_{-1} \leq C(1 + \|f\|)|t_1 - t_2|^{1/2}, \ \forall f \in H, t_1, t_2 \in [0, T],
 \]
 \[
 \|F^1_t\|_{\mathcal{L}(H, \dot{H}^{-1})} \leq C, \ \forall t \in [0, T].
 \]
- The initial value \(x_0 \) is a (possibly degenerate) \(\mathcal{F}_0 \)-measurable \(\dot{H}^1 \)-valued Gaussian random variable.
Existence, uniqueness of X and \textit{strong convergence}:

\textbf{Theorem (Kruse, 2014)}

\textit{Under Assumption 1:} $\forall p \geq 1$, $\sup_{h, \Delta t}(\|X^{T}_{h, \Delta t}\|_{L^{p}(\Omega; H)}) < \infty$ and $\exists C > 0$, s.t. $\forall h, \Delta t \in (0, 1]$

\[
\|X(T) - X^{T}_{h, \Delta t}\|_{L^{p}(\Omega; H)} \leq C \left(h + \Delta t^{1/2}\right).
\]

and $X^{T}_{h, \Delta t}$ is guaranteed to be Gaussian.
Assumptions and weak convergence

• The following assumption is only needed to tune the MC and MLMC estimator.

Assumption 2

The parameters of the SPDE (1) fulfill, for some $\delta \in [1/2, 1]$:

• $\exists C > 0$ s.t. $G : [0, T] \rightarrow \mathcal{L}^0_2$ satisfies

$$\|G(t_1) - G(t_2)\|_{\mathcal{L}^0_2} \leq C|t_1 - t_2|^\delta, \ \forall t_1, t_2 \in [0, T].$$

• $\exists C > 0$ s.t. $F : [0, T] \rightarrow H$ satisfies

$$\|F(t_1) - F(t_2)\| \leq C|t_1 - t_2|^\delta, \ \forall t_1, t_2 \in [0, T].$$

Furthermore, the functional $\phi : H \rightarrow \mathbb{R}$ is 2 times continuously Fréchet-differentiable with derivatives of polynomial growth.
Under these assumptions, we have \textit{weak convergence}:

\textbf{Theorem (Kruse, 2014)}

\textit{Under Assumptions 1 and 2: there exists }$C > 0$, \textit{such that for all }$h, \Delta t \in (0, 1]$

$$\left| \mathbb{E} \left[\phi(X(T)) \right] - \mathbb{E} \left[\phi(X_{h, \Delta t}^T) \right] \right| \leq C \left(1 + |\log(h)| \right) \left(h^2 + \Delta t^\delta \right).$$
Monte Carlo (MC) and multilevel Monte Carlo (MLMC)
Monte Carlo (MC)

- **Goal:** Efficiently estimate $\mathbb{E}[\phi(X(T))]$
- Replace $\phi(X(T))$ with $\phi(X_{h,\Delta t}^T)$, but how do we estimate $\mathbb{E}[\cdot]$?
- We denote the MC estimator by

$$E_N[\phi(X_{h,\Delta t}^T)] = \frac{1}{N} \sum_{i=1}^{N} \phi(X_{h,\Delta t}^T)^{(i)} \approx \mathbb{E}[\phi(X_{h,\Delta t}^T)]$$

- Two algorithms: path-based and covariance-based
Two MC algorithms

For $X_{h, \Delta t}^T = \sum_{k=1}^{N_h} x_k \Phi_k^h$, where $\Phi^h = (\Phi_k^h)_{k=1}^{N_h}$ is a basis of V_h, write $\bar{x}_h^T = [x_1, x_2, \ldots, x_{N_h}]'$.

Algorithm 1 Path-based MC method of computing an estimate $E_N[\phi(X_{h, \Delta t}^T)]$ of $E[\phi(X(T))]$

1: $result = 0$
2: for $i = 1$ to N do
3: Sample a realization $W^{(i)}$ of the Q-Wiener process W
4: Compute $\bar{x}_h^T = [x_1, x_2, \ldots, x_{N_h}]'$ by solving the matrix equations corresponding to the backward Euler scheme (2) driven by $W^{(i)}$
5: Compute $\phi(X_{h, \Delta t}^T) = \phi \left(\sum_{k=1}^{N_h} x_k \Phi_k^h \right)$
6: $result = result + \phi(X_{h, \Delta t}^T)^{(i)}/N$
7: end for
8: $E_N \left[\phi(X_{h, \Delta t}^T) \right] = result$
Two MC algorithms

Algorithm 2 Covariance-based MC method of computing an estimate $E_N[\phi(X_{h,\Delta t}^T)]$ of $\mathbb{E}[\phi(X(T))]$

1: Form the mean vector μ and covariance matrix Σ of \bar{x}_h^T by finding the mean and covariance of $X_{h,\Delta t}^T$
2: $result = 0$
3: for $i = 1$ to N do
4: Sample $\bar{x}_h^T = [x_1, x_2, \ldots, x_{N_h}]' \sim N(\mu, \Sigma)$
5: Compute $\phi(X_{h,\Delta t}^T) = \phi \left(\sum_{k=1}^{N_h} x_k \Phi_h^k \right)$
6: $result = result + \phi(X_{h,\Delta t}^T(i)) / N$
7: end for
8: $E_N \left[\phi(X_{h,\Delta t}^T) \right] = result$
Multilevel Monte Carlo (MLMC)

- Due to [Giles, 2008], for SPDE [Barth & Lang, 2012] and [Barth, Lang & Schwab, 2013]

- A sequence \((X^T_\ell)_{\ell \in \mathbb{N}_0}\), indexed by levels \(\ell \in \mathbb{N}_0\), of approximations by \(X^T_\ell = X^T_{h_{\ell}, \Delta t_{\ell}}\)

- \((h_{\ell})_{\ell \in \mathbb{N}_0}\) and \((\Delta t_{\ell})_{\ell \in \mathbb{N}_0}\) are decreasing sequences of mesh sizes and time step sizes

- MLMC estimator \(E^L[\phi(X^T_L)]\) is given by

\[
E^L[\phi(X^T_L)] = E_{N_0}[\phi(X^T_0)] + \sum_{\ell=1}^{L} E_{N_{\ell}}[\phi(X^T_{\ell}) - \phi(X^T_{\ell-1})].
\]

- Using weak and strong convergence rate results, the sample sizes \((N_{\ell})_{\ell \in \mathbb{N}_0}\) can be chosen so that \(E^L\) outperforms \(E_N\)
We set $X_{T-1} = 0$.

Algorithm 3 Path-based MLMC method of computing an estimate $E^L \left[\phi \left(X^T_L \right) \right]$ of $\mathbb{E} \left[\phi \left(X(T) \right) \right]$ [Barth & Lang, 2012]

1: $result = 0$
2: for $\ell = 0$ to L do
3: for $i = 1$ to N_ℓ do
4: Sample a realization $W^{(i)}$ of the Q-Wiener process W
5: Compute $\bar{x}_{h_{\ell-1}}^T$ and $\bar{x}_{h_\ell}^T$ by solving the matrix equations corresponding to the backward Euler scheme (2) driven by $W^{(i)}$
6: $result = result + \left(\phi(X^T_\ell) - \phi(X^T_{\ell-1}) \right) / N_\ell$

$$= result + \left(\sum_{k=1}^{N_{h_\ell}} x^\ell_k \Phi^h_k - \sum_{k=1}^{N_{h_{\ell-1}}} x^{\ell-1}_k \Phi^{h_{\ell-1}}_k \right) / N_\ell$$

7: end for
8: end for
9: $E^L \left[\phi \left(X^T_L \right) \right] = result$
Two MLMC algorithms

Algorithm 4 Covariance-based MLMC method of computing an estimate $E_L^L [\phi (X_L^T)]$ of $\mathbb{E}[\phi (X (T))]$

1: \(\text{result} = 0 \)
2: \textbf{for} \(\ell = 0 \) to \(L \) \textbf{do}
3: \hspace{1em} Compute the covariance matrix \(\Sigma_\ell \) and mean vector \(\mu_\ell \) of \(\bar{x}_\ell = [\bar{x}_{h_{\ell-1}}^T, \bar{x}_{h_\ell}^T]' \) by computing the means, covariances and cross-covariance of the pair \((X_{\ell-1}^T, X_\ell^T) \)
4: \hspace{1em} \textbf{for} \(i = 1 \) to \(N_\ell \) \textbf{do}
5: \hspace{2em} Sample \(\bar{x}_\ell \sim N(\mu_\ell, \Sigma_\ell) \)
6: \hspace{2em} \(\text{result} = \text{result} + (\phi(X_\ell^T) - \phi(X_{\ell-1}^T)) / N_\ell \)
7: \hspace{1em} \textbf{end for}
8: \textbf{end for}
9: \(E_L^L [\phi (X_L^T)] = \text{result} \)
Computing covariances and cross-covariances
Covariance computation

- Abbreviations: $R_{h,\Delta t} = (I_H - \Delta t A_h)$, $F_{h,\Delta t}^{1,j} = \left(I_H + \Delta t P_h F_{t,j}^1\right)$, and $F_{h,\Delta t}^{2,j} = \Delta t P_h F_{t,j}^2$

- (2) becomes $R_{h,\Delta t} X_{h,\Delta t}^{t,j+1} = F_{h,\Delta t}^{1,j} X_{h,\Delta t}^{t,j} + F_{h,\Delta t}^{2,j} + P_h G(t_j) \Delta W^j$

- For a Hilbert space U we write $U \otimes 2 = U \otimes U$

- $\Sigma^T = \text{Cov}(X_{h,\Delta t}^T) = \mathbb{E}[(X_{h,\Delta t}^T)^{\otimes 2}] - \mathbb{E}[X_{h,\Delta t}^T]^{\otimes 2}$

Theorem

Under Assumption 1: the mean $\mu^T \in V_h$ and covariance $\Sigma^T \in V_h \otimes 2$ of $X_{h,\Delta t}^T$ are given by the recursions

$$ R_{h,\Delta t} \nu^{t,j+1} = F_{h,\Delta t}^{1,j} \nu^{t,j} + F_{h,\Delta t}^{2,j} $$

(3)

and

$$ (R_{h,\Delta t})^{\otimes 2} \Sigma^{t,j+1} = (F_{h,\Delta t}^{1,j})^{\otimes 2} \Sigma^{t,j} + \mathbb{E} \left[(P_h G(t_j) \Delta W^j)^{\otimes 2} \right] $$

(4)

for $j = 0, 1, \ldots, N_{\Delta t} - 1$.
Proof sketch

• Based on an idea from stability analysis of SDE approximations (see e.g. [Buckwar & Sickenberger, 2012])

• Assume F linear for simplicity, i.e., $F_t^2 = 0$ for all $t \in [0, T]$

• $R_{h, \Delta t}X_{h, \Delta t}^{t_j+1} = F_{h, \Delta t}^{1,j}X_{h, \Delta t}^{t_j} + P_h G(t_j)\Delta W^j$

• $(R_{h, \Delta t}) \otimes^2 (X_{h, \Delta t}^{t_j+1}) \otimes^2$

\[
= (F_{h, \Delta t}^{1,j}) \otimes^2 (X_{h, \Delta t}^{t_j}) \otimes^2 + F_{h, \Delta t}^{1,j}X_{h, \Delta t}^{t_j} \otimes P_h G(t_j)\Delta W^j

+ P_h G(t_j)\Delta W^j \otimes F_{h, \Delta t}^{1,j}X_{h, \Delta t}^{t_j} + (P_h G(t_j)\Delta W^j) \otimes^2
\]

• $F_{h, \Delta t}^{1,j}X_{h, \Delta t}^{t_j}$ is \mathcal{F}_{t_j}-measurable, $P_h G(t_j)\Delta W^j$ is independent of \mathcal{F}_{t_j}

• $\mathbb{E}[F_{h, \Delta t}^{1,j}X_{h, \Delta t}^{t_j} \otimes P_h G(t_j)\Delta W^j]$

\[
= \mathbb{E}[F_{h, \Delta t}^{1,j}X_{h, \Delta t}^{t_j}] \otimes \mathbb{E}[P_h G(t_j)\Delta W^j] = 0
\]

• Tensorizing (3) and subtracting it from this then yields (4)
Cross-covariance computation

- $\Sigma_T = \text{Cov}(X_{h',\Delta_t'}, X_{h',\Delta_t})$

 $= \mathbb{E}[X_{h',\Delta_t'} \otimes X_{h',\Delta_t}] - \mathbb{E}[X_{h',\Delta_t'}] \otimes \mathbb{E}[X_{h',\Delta_t}]$

- Two approximations, $(X_{h',\Delta_t'})_{j=0}^{N\Delta_t'}$ and $(X^{t_j}_{h,\Delta_t})_{j=0}^{N\Delta_t}$, with $\Delta t' = K\Delta t$ for some $K \in \mathbb{N}$

Create an extension $(\hat{X}^{t_j}_{h',\Delta_t})_{j=0}^{N\Delta_t}$ of $(X^{t_j}_{h',\Delta_t'})_{j=0}^{N\Delta_t'}$ to the fine time grid by

$$
\hat{R}^j_{h',\Delta_t'} \hat{X}^{t_j+1}_{h',\Delta_t} = \hat{F}^{1,j}_{h',\Delta_t'} \hat{X}^{t_j}_{h',\Delta_t} + \hat{F}^{2,j}_{h',\Delta_t'} + P_{h'} \hat{G}(t_j) \Delta W^j,$$

for $j = 0, 1, \ldots, N\Delta_t - 1$. $\hat{X}^{t_j+1}_{h',\Delta_t} = X^{t(j+1)/K}_{h',\Delta_t}$ when $j + 1 = 0 \mod K$ if

$$
\hat{R}^j_{h',\Delta_t'} = \begin{cases} R_{h',\Delta_t'} & \text{if } j + 1 = 0 \mod K, \\ I_H & \text{otherwise}, \end{cases}
$$

$$
\hat{F}^{1,j}_{h',\Delta_t'} = \begin{cases} F^{1,j}_{h',\Delta_t'} & \text{if } j + 1 = 1 \mod K, \\ 0 & \text{otherwise}, \end{cases}
$$

$$
\hat{F}^{2,j}_{h',\Delta_t} = \begin{cases} F^{2,j}_{h',\Delta_t} & \text{if } j + 1 = 1 \mod K, \\ 0 & \text{otherwise}, \end{cases}
$$

and $\hat{G}(t_j) = G(t_j - (j \mod K))$.
Cross-covariance computation

Theorem

Under Assumption 1: \(\text{Cov}(X_{h',\Delta t'}, X_{h,\Delta t}) \) is given by \(\Sigma_T \in V_{h'} \otimes V_h \) where the sequence \(\{ \Sigma_{t_j} \}_{j=0}^{N_{\Delta t}} \) fulfills

\[
\left(\hat{R}_{h',\Delta t'}^{j} \otimes R_{h,\Delta t} \right) \Sigma_{t_j+1} = \left(\hat{F}_{h,\Delta t}^{1,j} \otimes F_{h,\Delta t}^{1,j} \right) \Sigma_{t_j} + \mathbb{E} \left[P_{h'} \hat{G}(t_j) \Delta W^j \otimes P_h G(t_j) \Delta W^j \right].
\]
Computational complexity and simulation
• Tuning the MC estimator using weak convergence:

\[
\| \mathbb{E}[\phi(X(T))] - E_N[\phi(X_{h,\Delta t}^T)] \|_{L^2(\Omega;\mathbb{R})} \\
\leq \| \mathbb{E}[\phi(X(T))] - \mathbb{E}[\phi(X_{h,\Delta t}^T)] \|_{L^2(\Omega;\mathbb{R})} \\
+ \| \mathbb{E}[\phi(X_{h,\Delta t}^T)] - E_N[\phi(X_{h,\Delta t}^T)] \|_{L^2(\Omega;\mathbb{R})} \\
\leq C \left((1 + |\log(h)|) \left(h^2 + \Delta t^\delta \right) + N^{-1/2} \right)
\]

• Balance the error by \(\Delta t^\delta \sim N^{-1/2} \sim h^2 \), so that

\[
\| \mathbb{E}[\phi(X(T))] - E_N[\phi(X_{h,\Delta t}^T)] \|_{L^2(\Omega;\mathbb{R})} \leq C \left(1 + |\log(h)| \right) h^2
\]
MC complexity continued

Assumption 3

For some $d = 1, 2, 3$, the cost of solving (2) once to get $X_{h, \Delta t}^{t_j+1}$ given $X_{h, \Delta t}^{t_j}$ for $j = 0, \ldots, N_{\Delta t} - 1$ is assumed to be $O(h^{-d})$ while the cost of solving the corresponding tensorized system (4) once is $O(h^{-2d})$. The cost of a sample of $X_{h, \Delta t}^T$ using $\text{Cov}(X_{h, \Delta t}^T)$ is assumed to be $O(h^{-2d})$.

Proposition

Under Assumptions 1 and 2: if $N \approx h^{-4}$ and $\Delta t \approx h^{2/\delta}$, then $\exists C > 0$, s.t. $\forall h > 0$,

$$\| \mathbb{E}[\phi(X(T))] - E_N[\phi(X_{h, \Delta t}^T)] \|_{L^2(\Omega; \mathbb{R})} \leq C (1 + |\log(h)|) h^2.$$

The cost of the path-based method is bounded by $O(h^{-4-d-2/\delta})$, the cost of the covariance-based method is bounded by $O(h^{-2d-2/\delta}) + O(h^{-2d-4}) = O(h^{-2d-4})$.

For the computational complexity analysis for the MLMC we follow the approach of [Lang, 2016] with some minor modifications.

Proposition

Under Assumptions 1 and 2: Let \((h_\ell)_{\ell \in \mathbb{N}_0}\) be a sequence that satisfies
\[h_\ell \asymp a^{-\ell} \text{ for some } a \in \mathbb{R} \text{ and all } \ell \in \mathbb{N}_0. \]
Let \((X^T_\ell)_{\ell \in \mathbb{N}_0}\) be given by
\[X^T_\ell = X^T_{h_\ell, \Delta t_\ell} \text{ with } \Delta t^\delta_\ell \asymp h^2_\ell. \]

For \(L \in \mathbb{N}, \ell = 1, \ldots, L, \epsilon > 0\), set
\[N_\ell = \lceil h_{-4}^{-2} h^2_\ell \ell^{1+\epsilon} \rceil, \text{ and }
N_0 = \lceil h_{-4}^{-2} \rceil. \]
Then \(\exists C > 0\) s.t. \(\forall L \in \mathbb{N}\)

\[\| \mathbb{E} [\phi (X(T))] - E^L \left[\phi (X^T_L) \right] \|_{L^2(\Omega;\mathbb{R})} \leq C(1 + |\log(h_L)|)h^2_L. \]

The cost of finding \(E^L \left[\phi (X^T_L) \right]\) with the path-based method is bounded by \(O(h_L^{-d-2/\delta} L^{2+\epsilon})\) and with the covariance-based method by \(O(\max(h_L^{-2d-2/\delta} L, h_L^{-2-2d} L^{2+\epsilon}))\).
Complexity remarks

<table>
<thead>
<tr>
<th></th>
<th>MC</th>
<th>MLMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>$O(h^{-4-d-2/\delta})$</td>
<td>$O(h_L^{-2-d-2/\delta} L^{2+\epsilon})$</td>
</tr>
<tr>
<td>Cov</td>
<td>$O(h^{-2d-4})$</td>
<td>$O(\max(h_L^{-2d-2/\delta} L, h_L^{-2-2d} L^{2+\epsilon}))$</td>
</tr>
</tbody>
</table>

- $\delta = 1/2 \implies$ Cov + MC should be used for $d = 1, 2$, for $d = 3$ use Path + MLMC
- $\delta = 1 \implies$ Cov + MLMC should be used for $d = 1, 2$, for $d = 3$ use Path + MLMC
• Consider the stochastic heat equation driven by additive (i.e., $G = I$) Wiener noise

$$dX(t) = \Delta X(t) \, dt + dW(t), \quad t \in (0, T]$$

$$X(0) = x_0$$

on $H = L^2(D)$ with $D = (0, 1)$, for $t \in (0, T] = (0, 1]$ with deterministic initial value $X(0) = x_0 = \sin(2\pi \cdot)$ and Dirichlet zero boundary conditions.

• The covariance function of W is for $x, y \in D$ is chosen to be

$$q(x, y) = 20 \exp(-2|x - y|).$$

• $\phi(\cdot) = \| \cdot \|^2$.
• Let $(T_h)_{h \in (0,1]}$ be a family of uniform triangulations of $(0,1)$ with h being the mesh size and let V_h be the space of all functions that are continuous and piecewise linear on T_h and zero at the boundary of $(0,1)$.

• We use $\Phi_h = (\Phi^h_i, i = 1, 2, \ldots, N_h)$, the standard basis of hat functions, on V_h and for $V_h \otimes 2$ we use $\Phi^{2,h} = (\Phi^{2,h}_i, i = 1, 2, \ldots, N^2_h)$ with $\Phi^{2,h}_i = \Phi^h_{\lfloor (i-1)/N_h \rfloor + 1} \otimes \Phi^h_{i - \lfloor (i-1)/N_h \rfloor N_h}$ for $i = 1, 2, \ldots, N^2_h$.

\[D = [0, 1] \]
Simulation results, MC

(a) MSE for MC.

(b) Computational costs in seconds.

Figure: Convergence and computational costs of the MC estimator.

- Plotting the errors $\| \mathbb{E}[\phi(X(T))] - E_N[\phi(X^T_{h,\Delta t})] \|_{L^2(\Omega;\mathbb{R})}$ for $h = 2^{-1}, \ldots, 2^{-6}$.
Simulation results, MLMC

(a) MSE for MLMC.

(b) Computational costs in seconds.

Figure: Convergence and computational costs of the MLMC estimator.

- Plotting the errors $\| \mathbb{E}[\phi(X(T))] - E^L[\phi(X^T_L)] \|_{L^2(\Omega;\mathbb{R})}$ for $h_L = 2^{-1}, \ldots, 2^{-6}$.

Concluding remarks

- Covariance-based sampling can significantly reduce the computational complexity of Monte Carlo methods for parabolic SPDE, and in MLMC it does not require nesting of \((V_h)^{h\in(0,1]}\).
- The sampling requires a Gaussian approximation, but the computation of the covariance can be done for more general SPDEs (affine linear multiplicative noise, Lévy noise...) and temporal approximations (general rational approximations of the semigroup).
- Future work: Consider hyperbolic equations and alternative methods of sampling given the covariance.
- Details at arXiv:1806.11523 [math.PR].
- Thank you for listening!